Bridging Knowledge Graphs to Generate Scene Graphs
- URL: http://arxiv.org/abs/2001.02314v4
- Date: Sat, 18 Jul 2020 10:59:53 GMT
- Title: Bridging Knowledge Graphs to Generate Scene Graphs
- Authors: Alireza Zareian, Svebor Karaman, Shih-Fu Chang
- Abstract summary: We propose a novel graph-based neural network that iteratively propagates information between the two graphs, as well as within each of them.
Our Graph Bridging Network, GB-Net, successively infers edges and nodes, allowing to simultaneously exploit and refine the rich, heterogeneous structure of the interconnected scene and commonsense graphs.
- Score: 49.69377653925448
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scene graphs are powerful representations that parse images into their
abstract semantic elements, i.e., objects and their interactions, which
facilitates visual comprehension and explainable reasoning. On the other hand,
commonsense knowledge graphs are rich repositories that encode how the world is
structured, and how general concepts interact. In this paper, we present a
unified formulation of these two constructs, where a scene graph is seen as an
image-conditioned instantiation of a commonsense knowledge graph. Based on this
new perspective, we re-formulate scene graph generation as the inference of a
bridge between the scene and commonsense graphs, where each entity or predicate
instance in the scene graph has to be linked to its corresponding entity or
predicate class in the commonsense graph. To this end, we propose a novel
graph-based neural network that iteratively propagates information between the
two graphs, as well as within each of them, while gradually refining their
bridge in each iteration. Our Graph Bridging Network, GB-Net, successively
infers edges and nodes, allowing to simultaneously exploit and refine the rich,
heterogeneous structure of the interconnected scene and commonsense graphs.
Through extensive experimentation, we showcase the superior accuracy of GB-Net
compared to the most recent methods, resulting in a new state of the art. We
publicly release the source code of our method.
Related papers
- Contrastive Learning for Non-Local Graphs with Multi-Resolution
Structural Views [1.4445779250002606]
We propose a novel multiview contrastive learning approach that integrates diffusion filters on graphs.
By incorporating multiple graph views as augmentations, our method captures the structural equivalence in heterophilic graphs.
arXiv Detail & Related papers (2023-08-19T17:42:02Z) - SynGraphy: Succinct Summarisation of Large Networks via Small Synthetic
Representative Graphs [4.550112751061436]
We describe SynGraphy, a method for visually summarising the structure of large network datasets.
It works by drawing smaller graphs generated to have similar structural properties to the input graphs.
arXiv Detail & Related papers (2023-02-15T16:00:15Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
We propose a contrastive graph matching network (CGMN) for self-supervised graph similarity learning.
We employ two strategies, namely cross-view interaction and cross-graph interaction, for effective node representation learning.
We transform node representations into graph-level representations via pooling operations for graph similarity computation.
arXiv Detail & Related papers (2022-05-30T13:20:26Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
This paper presents a cross-view graph pooling (Co-Pooling) method to better exploit crucial graph structure information.
Through cross-view interaction, edge-view pooling and node-view pooling seamlessly reinforce each other to learn more informative graph-level representations.
arXiv Detail & Related papers (2021-09-24T08:01:23Z) - A Deep Local and Global Scene-Graph Matching for Image-Text Retrieval [4.159666152160874]
Scene graph presentation is a suitable method for the image-text matching challenge.
We introduce the Local and Global Scene Graph Matching (LGSGM) model that enhances the state-of-the-art method.
Our enhancement with the combination of levels can improve the performance of the baseline method by increasing the recall by more than 10% on the Flickr30k dataset.
arXiv Detail & Related papers (2021-06-04T10:33:14Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.