Leveraging LLM-Assisted Query Understanding for Live Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2506.21384v1
- Date: Thu, 26 Jun 2025 15:35:12 GMT
- Title: Leveraging LLM-Assisted Query Understanding for Live Retrieval-Augmented Generation
- Authors: Guanting Dong, Xiaoxi Li, Yuyao Zhang, Mengjie Deng,
- Abstract summary: Real-world live retrieval-augmented generation (RAG) systems face challenges when processing user queries that are noisy, ambiguous, and contain multiple intents.<n>This paper introduces Omni-RAG, a novel framework designed to improve the robustness and effectiveness of RAG systems in live, open-domain settings.
- Score: 6.62734677678023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world live retrieval-augmented generation (RAG) systems face significant challenges when processing user queries that are often noisy, ambiguous, and contain multiple intents. While RAG enhances large language models (LLMs) with external knowledge, current systems typically struggle with such complex inputs, as they are often trained or evaluated on cleaner data. This paper introduces Omni-RAG, a novel framework designed to improve the robustness and effectiveness of RAG systems in live, open-domain settings. Omni-RAG employs LLM-assisted query understanding to preprocess user inputs through three key modules: (1) Deep Query Understanding and Decomposition, which utilizes LLMs with tailored prompts to denoise queries (e.g., correcting spelling errors) and decompose multi-intent queries into structured sub-queries; (2) Intent-Aware Knowledge Retrieval, which performs retrieval for each sub-query from a corpus (i.e., FineWeb using OpenSearch) and aggregates the results; and (3) Reranking and Generation, where a reranker (i.e., BGE) refines document selection before a final response is generated by an LLM (i.e., Falcon-10B) using a chain-of-thought prompt. Omni-RAG aims to bridge the gap between current RAG capabilities and the demands of real-world applications, such as those highlighted by the SIGIR 2025 LiveRAG Challenge, by robustly handling complex and noisy queries.
Related papers
- DeepSieve: Information Sieving via LLM-as-a-Knowledge-Router [57.28685457991806]
DeepSieve is an agentic RAG framework that incorporates information sieving via LLM-as-a-knowledge-router.<n>Our design emphasizes modularity, transparency, and adaptability, leveraging recent advances in agentic system design.
arXiv Detail & Related papers (2025-07-29T17:55:23Z) - Insight-RAG: Enhancing LLMs with Insight-Driven Augmentation [4.390998479503661]
We propose Insight-RAG, a novel framework designed to retrieve documents based on insights.<n>In the initial stage of Insight-RAG, instead of using traditional retrieval methods, we employ an LLM to analyze the input query and task.<n>By integrating the original query with the retrieved insights, similar to conventional RAG approaches, we employ a final LLM to generate a contextually enriched and accurate response.
arXiv Detail & Related papers (2025-03-31T19:50:27Z) - QuIM-RAG: Advancing Retrieval-Augmented Generation with Inverted Question Matching for Enhanced QA Performance [1.433758865948252]
This work presents a novel architecture for building Retrieval-Augmented Generation (RAG) systems.<n>RAG architecture is constructed to generate responses from the target document.<n>We introduce QuIM-RAG, a novel approach for the retrieval mechanism in our system.
arXiv Detail & Related papers (2025-01-06T01:07:59Z) - Don't Do RAG: When Cache-Augmented Generation is All You Need for Knowledge Tasks [11.053340674721005]
Retrieval-augmented generation (RAG) has gained traction as a powerful approach for enhancing language models by integrating external knowledge sources.<n>This paper proposes an alternative paradigm, cache-augmented generation (CAG) that bypasses real-time retrieval.
arXiv Detail & Related papers (2024-12-20T06:58:32Z) - mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA [78.45521005703958]
multimodal Retrieval-Augmented Generation (mRAG) is naturally introduced to provide MLLMs with comprehensive and up-to-date knowledge.
We propose a novel framework called textbfRetrieval-textbfReftextbfAugmented textbfGeneration (mR$2$AG) which achieves adaptive retrieval and useful information localization.
mR$2$AG significantly outperforms state-of-the-art MLLMs on INFOSEEK and Encyclopedic-VQA
arXiv Detail & Related papers (2024-11-22T16:15:50Z) - Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent [92.5712549836791]
Multimodal Retrieval Augmented Generation (mRAG) plays an important role in mitigating the "hallucination" issue inherent in multimodal large language models (MLLMs)<n>We propose the first self-adaptive planning agent for multimodal retrieval, OmniSearch.
arXiv Detail & Related papers (2024-11-05T09:27:21Z) - MemoRAG: Boosting Long Context Processing with Global Memory-Enhanced Retrieval Augmentation [60.04380907045708]
Retrieval-Augmented Generation (RAG) is considered a promising strategy to address this problem.<n>We propose MemoRAG, a novel RAG framework empowered by global memory-augmented retrieval.<n>MemoRAG achieves superior performances across a variety of long-context evaluation tasks.
arXiv Detail & Related papers (2024-09-09T13:20:31Z) - Multi-Head RAG: Solving Multi-Aspect Problems with LLMs [18.581518952488093]
Multi-Head RAG (MRAG) is a novel scheme for fetching multi-aspect documents.<n>We show MRAG's design advantages over 18 RAG baselines, empirical improvements of up to 20% in retrieval success ratios.
arXiv Detail & Related papers (2024-06-07T16:59:38Z) - T-RAG: Lessons from the LLM Trenches [7.545277950323593]
Application area is question answering over private enterprise documents.
Retrieval-Augmented Generation is most prominent framework for building LLM-based applications.
System, which we call Tree-RAG (T-RAG), uses a tree structure to represent entity hierarchies.
arXiv Detail & Related papers (2024-02-12T08:45:08Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.