MemoRAG: Boosting Long Context Processing with Global Memory-Enhanced Retrieval Augmentation
- URL: http://arxiv.org/abs/2409.05591v3
- Date: Wed, 09 Apr 2025 09:09:37 GMT
- Title: MemoRAG: Boosting Long Context Processing with Global Memory-Enhanced Retrieval Augmentation
- Authors: Hongjin Qian, Zheng Liu, Peitian Zhang, Kelong Mao, Defu Lian, Zhicheng Dou, Tiejun Huang,
- Abstract summary: Retrieval-Augmented Generation (RAG) is considered a promising strategy to address this problem.<n>We propose MemoRAG, a novel RAG framework empowered by global memory-augmented retrieval.<n>MemoRAG achieves superior performances across a variety of long-context evaluation tasks.
- Score: 60.04380907045708
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Processing long contexts presents a significant challenge for large language models (LLMs). While recent advancements allow LLMs to handle much longer contexts than before (e.g., 32K or 128K tokens), it is computationally expensive and can still be insufficient for many applications. Retrieval-Augmented Generation (RAG) is considered a promising strategy to address this problem. However, conventional RAG methods face inherent limitations because of two underlying requirements: 1) explicitly stated queries, and 2) well-structured knowledge. These conditions, however, do not hold in general long-context processing tasks. In this work, we propose MemoRAG, a novel RAG framework empowered by global memory-augmented retrieval. MemoRAG features a dual-system architecture. First, it employs a light but long-range system to create a global memory of the long context. Once a task is presented, it generates draft answers, providing useful clues for the retrieval tools to locate relevant information within the long context. Second, it leverages an expensive but expressive system, which generates the final answer based on the retrieved information. Building upon this fundamental framework, we realize the memory module in the form of KV compression, and reinforce its memorization and cluing capacity from the Generation quality's Feedback (a.k.a. RLGF). In our experiments, MemoRAG achieves superior performances across a variety of long-context evaluation tasks, not only complex scenarios where traditional RAG methods struggle, but also simpler ones where RAG is typically applied.
Related papers
- Insight-RAG: Enhancing LLMs with Insight-Driven Augmentation [4.390998479503661]
We propose Insight-RAG, a novel framework designed to retrieve documents based on insights.
In the initial stage of Insight-RAG, instead of using traditional retrieval methods, we employ an LLM to analyze the input query and task.
By integrating the original query with the retrieved insights, similar to conventional RAG approaches, we employ a final LLM to generate a contextually enriched and accurate response.
arXiv Detail & Related papers (2025-03-31T19:50:27Z) - Tuning LLMs by RAG Principles: Towards LLM-native Memory [27.236930156936356]
Two mainstream solutions to incorporate memory into the generation process are long-context LLMs and retrieval-augmented generation (RAG)
In this paper, we first systematically compare these two types of solutions on three renovated/new datasets.
We propose a novel method RAG-Tuned-LLM which fine-tunes a relative small (e.g., 7B) LLM using the data generated following the RAG principles, so it can combine the advantages of both solutions.
arXiv Detail & Related papers (2025-03-20T12:04:40Z) - Don't Do RAG: When Cache-Augmented Generation is All You Need for Knowledge Tasks [11.053340674721005]
Retrieval-augmented generation (RAG) has gained traction as a powerful approach for enhancing language models by integrating external knowledge sources.
This paper proposes an alternative paradigm, cache-augmented generation (CAG) that bypasses real-time retrieval.
arXiv Detail & Related papers (2024-12-20T06:58:32Z) - mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA [78.45521005703958]
multimodal Retrieval-Augmented Generation (mRAG) is naturally introduced to provide MLLMs with comprehensive and up-to-date knowledge.
We propose a novel framework called textbfRetrieval-textbfReftextbfAugmented textbfGeneration (mR$2$AG) which achieves adaptive retrieval and useful information localization.
mR$2$AG significantly outperforms state-of-the-art MLLMs on INFOSEEK and Encyclopedic-VQA
arXiv Detail & Related papers (2024-11-22T16:15:50Z) - Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
We propose a novel two-stage fine-tuning architecture called Invar-RAG.
In the retrieval stage, an LLM-based retriever is constructed by integrating LoRA-based representation learning.
In the generation stage, a refined fine-tuning method is employed to improve LLM accuracy in generating answers based on retrieved information.
arXiv Detail & Related papers (2024-11-11T14:25:37Z) - LongRAG: A Dual-Perspective Retrieval-Augmented Generation Paradigm for Long-Context Question Answering [27.114593394058144]
LongRAG is a general, dual-perspective, and robust LLM-based RAG system paradigm for LCQA.
LongRAG significantly outperforms long-context LLMs (up by 6.94%), advanced RAG (up by 6.16%), and Vanilla RAG (up by 17.25%)
arXiv Detail & Related papers (2024-10-23T17:24:58Z) - VisRAG: Vision-based Retrieval-augmented Generation on Multi-modality Documents [66.42579289213941]
Retrieval-augmented generation (RAG) is an effective technique that enables large language models to utilize external knowledge sources for generation.
In this paper, we introduce VisRAG, which tackles this issue by establishing a vision-language model (VLM)-based RAG pipeline.
In this pipeline, instead of first parsing the document to obtain text, the document is directly embedded using a VLM as an image and then retrieved to enhance the generation of a VLM.
arXiv Detail & Related papers (2024-10-14T15:04:18Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - Embodied-RAG: General Non-parametric Embodied Memory for Retrieval and Generation [65.23793829741014]
Embodied-RAG is a framework that enhances the model of an embodied agent with a non-parametric memory system.
At its core, Embodied-RAG's memory is structured as a semantic forest, storing language descriptions at varying levels of detail.
We demonstrate that Embodied-RAG effectively bridges RAG to the robotics domain, successfully handling over 200 explanation and navigation queries.
arXiv Detail & Related papers (2024-09-26T21:44:11Z) - GEM-RAG: Graphical Eigen Memories For Retrieval Augmented Generation [3.2027710059627545]
We introduce Graphical Eigen Memories For Retrieval Augmented Generation (GEM-RAG)
GEM-RAG works by tagging each chunk of text in a given text corpus with LLM generated utility'' questions.
We evaluate GEM-RAG, using both UnifiedQA and GPT-3.5 Turbo as the LLMs, with SBERT, and OpenAI's text encoders on two standard QA tasks.
arXiv Detail & Related papers (2024-09-23T21:42:47Z) - Better RAG using Relevant Information Gain [1.5604249682593647]
A common way to extend the memory of large language models (LLMs) is by retrieval augmented generation (RAG)
We propose a novel simple optimization metric based on relevant information gain, a probabilistic measure of the total information relevant to a query for a set of retrieved results.
When used as a drop-in replacement for the retrieval component of a RAG system, this method yields state-of-the-art performance on question answering tasks.
arXiv Detail & Related papers (2024-07-16T18:09:21Z) - Multi-Head RAG: Solving Multi-Aspect Problems with LLMs [13.638439488923671]
Retrieval Augmented Generation (RAG) enhances the abilities of Large Language Models (LLMs)
Existing RAG solutions do not focus on queries that may require fetching multiple documents with substantially different contents.
This paper introduces Multi-Head RAG (MRAG), a novel scheme designed to address this gap with a simple yet powerful idea.
arXiv Detail & Related papers (2024-06-07T16:59:38Z) - FlashRAG: A Modular Toolkit for Efficient Retrieval-Augmented Generation Research [70.6584488911715]
retrieval-augmented generation (RAG) has attracted considerable research attention.
Existing RAG toolkits are often heavy and inflexibly, failing to meet the customization needs of researchers.
Our toolkit has implemented 16 advanced RAG methods and gathered and organized 38 benchmark datasets.
arXiv Detail & Related papers (2024-05-22T12:12:40Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG) is a technique that enhances the capabilities of large language models (LLMs) by incorporating external knowledge sources.
This paper constructs a large-scale and more comprehensive benchmark, and evaluates all the components of RAG systems in various RAG application scenarios.
arXiv Detail & Related papers (2024-01-30T14:25:32Z) - RET-LLM: Towards a General Read-Write Memory for Large Language Models [53.288356721954514]
RET-LLM is a novel framework that equips large language models with a general write-read memory unit.
Inspired by Davidsonian semantics theory, we extract and save knowledge in the form of triplets.
Our framework exhibits robust performance in handling temporal-based question answering tasks.
arXiv Detail & Related papers (2023-05-23T17:53:38Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.