WorldVLA: Towards Autoregressive Action World Model
- URL: http://arxiv.org/abs/2506.21539v1
- Date: Thu, 26 Jun 2025 17:55:40 GMT
- Title: WorldVLA: Towards Autoregressive Action World Model
- Authors: Jun Cen, Chaohui Yu, Hangjie Yuan, Yuming Jiang, Siteng Huang, Jiayan Guo, Xin Li, Yibing Song, Hao Luo, Fan Wang, Deli Zhao, Hao Chen,
- Abstract summary: We present WorldVLA, an autoregressive action world model that unifies action and image understanding and generation.<n>WorldVLA intergrates Vision-Language-Action (VLA) model and world model in one single framework.
- Score: 43.74612972649639
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present WorldVLA, an autoregressive action world model that unifies action and image understanding and generation. Our WorldVLA intergrates Vision-Language-Action (VLA) model and world model in one single framework. The world model predicts future images by leveraging both action and image understanding, with the purpose of learning the underlying physics of the environment to improve action generation. Meanwhile, the action model generates the subsequent actions based on image observations, aiding in visual understanding and in turn helps visual generation of the world model. We demonstrate that WorldVLA outperforms standalone action and world models, highlighting the mutual enhancement between the world model and the action model. In addition, we find that the performance of the action model deteriorates when generating sequences of actions in an autoregressive manner. This phenomenon can be attributed to the model's limited generalization capability for action prediction, leading to the propagation of errors from earlier actions to subsequent ones. To address this issue, we propose an attention mask strategy that selectively masks prior actions during the generation of the current action, which shows significant performance improvement in the action chunk generation task.
Related papers
- DreamVLA: A Vision-Language-Action Model Dreamed with Comprehensive World Knowledge [56.3802428957899]
We propose DreamVLA, a novel VLA framework that integrates comprehensive world knowledge forecasting to enable inverse dynamics modeling.<n>DreamVLA introduces a dynamic-region-guided world knowledge prediction, integrated with the spatial and semantic cues, which provide compact yet comprehensive representations for action planning.<n>Experiments on both real-world and simulation environments demonstrate that DreamVLA achieves 76.7% success rate on real robot tasks.
arXiv Detail & Related papers (2025-07-06T16:14:29Z) - WorldPrediction: A Benchmark for High-level World Modeling and Long-horizon Procedural Planning [52.36434784963598]
We introduce WorldPrediction, a video-based benchmark for evaluating world modeling and procedural planning capabilities of different AI models.<n>We show that current frontier models barely achieve 57% accuracy on WorldPrediction-WM and 38% on WorldPrediction-PP whereas humans are able to solve both tasks perfectly.
arXiv Detail & Related papers (2025-06-04T18:22:40Z) - Learning 3D Persistent Embodied World Models [84.40585374179037]
We introduce a new persistent embodied world model with an explicit memory of previously generated content.<n>During generation time, our video diffusion model predicts RGB-D video of the future observations of the agent.<n>This generation is then aggregated into a persistent 3D map of the environment.
arXiv Detail & Related papers (2025-05-05T17:59:17Z) - AdaWorld: Learning Adaptable World Models with Latent Actions [76.50869178593733]
We propose AdaWorld, an innovative world model learning approach that enables efficient adaptation.<n>Key idea is to incorporate action information during the pretraining of world models.<n>We then develop an autoregressive world model that conditions on these latent actions.
arXiv Detail & Related papers (2025-03-24T17:58:15Z) - Pre-Trained Video Generative Models as World Simulators [59.546627730477454]
We propose Dynamic World Simulation (DWS) to transform pre-trained video generative models into controllable world simulators.<n>To achieve precise alignment between conditioned actions and generated visual changes, we introduce a lightweight, universal action-conditioned module.<n> Experiments demonstrate that DWS can be versatilely applied to both diffusion and autoregressive transformer models.
arXiv Detail & Related papers (2025-02-10T14:49:09Z) - Making Large Language Models into World Models with Precondition and Effect Knowledge [1.8561812622368763]
We show that Large Language Models (LLMs) can be induced to perform two critical world model functions.
We validate that the precondition and effect knowledge generated by our models aligns with human understanding of world dynamics.
arXiv Detail & Related papers (2024-09-18T19:28:04Z) - OccLLaMA: An Occupancy-Language-Action Generative World Model for Autonomous Driving [12.004183122121042]
OccLLaMA is an occupancy-language-action generative world model.
We build a unified multi-modal vocabulary for vision, language and action.
OccLLaMA achieves competitive performance across multiple tasks.
arXiv Detail & Related papers (2024-09-05T06:30:01Z) - Simplifying Latent Dynamics with Softly State-Invariant World Models [10.722955763425228]
We introduce the Parsimonious Latent Space Model (PLSM), a world model that regularizes the latent dynamics to make the effect of the agent's actions more predictable.
We find that our regularization improves accuracy, generalization, and performance in downstream tasks.
arXiv Detail & Related papers (2024-01-31T13:52:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.