Simplifying Latent Dynamics with Softly State-Invariant World Models
- URL: http://arxiv.org/abs/2401.17835v2
- Date: Fri, 01 Nov 2024 15:55:34 GMT
- Title: Simplifying Latent Dynamics with Softly State-Invariant World Models
- Authors: Tankred Saanum, Peter Dayan, Eric Schulz,
- Abstract summary: We introduce the Parsimonious Latent Space Model (PLSM), a world model that regularizes the latent dynamics to make the effect of the agent's actions more predictable.
We find that our regularization improves accuracy, generalization, and performance in downstream tasks.
- Score: 10.722955763425228
- License:
- Abstract: To solve control problems via model-based reasoning or planning, an agent needs to know how its actions affect the state of the world. The actions an agent has at its disposal often change the state of the environment in systematic ways. However, existing techniques for world modelling do not guarantee that the effect of actions are represented in such systematic ways. We introduce the Parsimonious Latent Space Model (PLSM), a world model that regularizes the latent dynamics to make the effect of the agent's actions more predictable. Our approach minimizes the mutual information between latent states and the change that an action produces in the agent's latent state, in turn minimizing the dependence the state has on the dynamics. This makes the world model softly state-invariant. We combine PLSM with different model classes used for i) future latent state prediction, ii) planning, and iii) model-free reinforcement learning. We find that our regularization improves accuracy, generalization, and performance in downstream tasks, highlighting the importance of systematic treatment of actions in world models.
Related papers
- Making Large Language Models into World Models with Precondition and Effect Knowledge [1.8561812622368763]
We show that Large Language Models (LLMs) can be induced to perform two critical world model functions.
We validate that the precondition and effect knowledge generated by our models aligns with human understanding of world dynamics.
arXiv Detail & Related papers (2024-09-18T19:28:04Z) - Zero-shot Safety Prediction for Autonomous Robots with Foundation World Models [0.12499537119440243]
A world model creates a surrogate world to train a controller and predict safety violations by learning the internal dynamic model of systems.
We propose foundation world models that embed observations into meaningful and causally latent representations.
This enables the surrogate dynamics to directly predict causal future states by leveraging a training-free large language model.
arXiv Detail & Related papers (2024-03-30T20:03:49Z) - ReCoRe: Regularized Contrastive Representation Learning of World Model [21.29132219042405]
We present a world model that learns invariant features using contrastive unsupervised learning and an intervention-invariant regularizer.
Our method outperforms current state-of-the-art model-based and model-free RL methods and significantly improves on out-of-distribution point navigation tasks evaluated on the iGibson benchmark.
arXiv Detail & Related papers (2023-12-14T15:53:07Z) - Dual policy as self-model for planning [71.73710074424511]
We refer to the model used to simulate one's decisions as the agent's self-model.
Inspired by current reinforcement learning approaches and neuroscience, we explore the benefits and limitations of using a distilled policy network as the self-model.
arXiv Detail & Related papers (2023-06-07T13:58:45Z) - Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
We propose Iso-Dream++, a model-based reinforcement learning approach.
We perform policy optimization based on the decoupled latent imaginations.
This enables long-horizon visuomotor control tasks to benefit from isolating mixed dynamics sources in the wild.
arXiv Detail & Related papers (2023-03-27T02:55:56Z) - Isolating and Leveraging Controllable and Noncontrollable Visual
Dynamics in World Models [65.97707691164558]
We present Iso-Dream, which improves the Dream-to-Control framework in two aspects.
First, by optimizing inverse dynamics, we encourage world model to learn controllable and noncontrollable sources.
Second, we optimize the behavior of the agent on the decoupled latent imaginations of the world model.
arXiv Detail & Related papers (2022-05-27T08:07:39Z) - Dream to Explore: Adaptive Simulations for Autonomous Systems [3.0664963196464448]
We tackle the problem of learning to control dynamical systems by applying Bayesian nonparametric methods.
By employing Gaussian processes to discover latent world dynamics, we mitigate common data efficiency issues observed in reinforcement learning.
Our algorithm jointly learns a world model and policy by optimizing a variational lower bound of a log-likelihood.
arXiv Detail & Related papers (2021-10-27T04:27:28Z) - Model-Invariant State Abstractions for Model-Based Reinforcement
Learning [54.616645151708994]
We introduce a new type of state abstraction called textitmodel-invariance.
This allows for generalization to novel combinations of unseen values of state variables.
We prove that an optimal policy can be learned over this model-invariance state abstraction.
arXiv Detail & Related papers (2021-02-19T10:37:54Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z) - Context-aware Dynamics Model for Generalization in Model-Based
Reinforcement Learning [124.9856253431878]
We decompose the task of learning a global dynamics model into two stages: (a) learning a context latent vector that captures the local dynamics, then (b) predicting the next state conditioned on it.
In order to encode dynamics-specific information into the context latent vector, we introduce a novel loss function that encourages the context latent vector to be useful for predicting both forward and backward dynamics.
The proposed method achieves superior generalization ability across various simulated robotics and control tasks, compared to existing RL schemes.
arXiv Detail & Related papers (2020-05-14T08:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.