SAM4D: Segment Anything in Camera and LiDAR Streams
- URL: http://arxiv.org/abs/2506.21547v1
- Date: Thu, 26 Jun 2025 17:59:14 GMT
- Title: SAM4D: Segment Anything in Camera and LiDAR Streams
- Authors: Jianyun Xu, Song Wang, Ziqian Ni, Chunyong Hu, Sheng Yang, Jianke Zhu, Qiang Li,
- Abstract summary: We present SAM4D, a multi-modal and temporal foundation model for promptable segmentation across camera and LiDAR streams.<n>UMPE is introduced to align camera and LiDAR features in a shared 3D space, enabling seamless cross-modal prompting.<n>We propose Motion-aware Cross-modal Attention Memory, which leverages ego-motion compensation to enhance temporal consistency.
- Score: 20.769019263142056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present SAM4D, a multi-modal and temporal foundation model designed for promptable segmentation across camera and LiDAR streams. Unified Multi-modal Positional Encoding (UMPE) is introduced to align camera and LiDAR features in a shared 3D space, enabling seamless cross-modal prompting and interaction. Additionally, we propose Motion-aware Cross-modal Memory Attention (MCMA), which leverages ego-motion compensation to enhance temporal consistency and long-horizon feature retrieval, ensuring robust segmentation across dynamically changing autonomous driving scenes. To avoid annotation bottlenecks, we develop a multi-modal automated data engine that synergizes VFM-driven video masklets, spatiotemporal 4D reconstruction, and cross-modal masklet fusion. This framework generates camera-LiDAR aligned pseudo-labels at a speed orders of magnitude faster than human annotation while preserving VFM-derived semantic fidelity in point cloud representations. We conduct extensive experiments on the constructed Waymo-4DSeg, which demonstrate the powerful cross-modal segmentation ability and great potential in data annotation of proposed SAM4D.
Related papers
- VideoMolmo: Spatio-Temporal Grounding Meets Pointing [73.25506085339252]
VideoMolmo is a model tailored for fine-grained pointing of video sequences.<n>A novel temporal mask fusion employs SAM2 for bidirectional point propagation.<n>To evaluate the generalization of VideoMolmo, we introduce VPoMolS-temporal, a challenging out-of-distribution benchmark spanning five real-world scenarios.
arXiv Detail & Related papers (2025-06-05T17:59:29Z) - DualDiff: Dual-branch Diffusion Model for Autonomous Driving with Semantic Fusion [9.225796678303487]
We propose DualDiff, a dual-branch conditional diffusion model designed to enhance multi-view driving scene generation.<n>We introduce Occupancy Ray Sampling (ORS), a semantic-rich 3D representation, alongside numerical driving scene representation.<n>To improve cross-modal information integration, we propose a Semantic Fusion Attention (SFA) mechanism that aligns and fuses features across modalities.
arXiv Detail & Related papers (2025-05-03T16:20:01Z) - Doracamom: Joint 3D Detection and Occupancy Prediction with Multi-view 4D Radars and Cameras for Omnidirectional Perception [9.76463525667238]
We propose Doracamom, the first framework that fuses multi-view cameras and 4D radar for joint 3D object detection and semantic occupancy prediction.<n>Code and models will be publicly available.
arXiv Detail & Related papers (2025-01-26T04:24:07Z) - LargeAD: Large-Scale Cross-Sensor Data Pretraining for Autonomous Driving [52.83707400688378]
LargeAD is a versatile and scalable framework designed for large-scale 3D pretraining across diverse real-world driving datasets.<n>Our framework leverages VFMs to extract semantically rich superpixels from 2D images, which are aligned with LiDAR point clouds to generate high-quality contrastive samples.<n>Our approach delivers significant performance improvements over state-of-the-art methods in both linear probing and fine-tuning tasks for both LiDAR-based segmentation and object detection.
arXiv Detail & Related papers (2025-01-07T18:59:59Z) - Driv3R: Learning Dense 4D Reconstruction for Autonomous Driving [116.10577967146762]
We propose Driv3R, a framework that directly regresses per-frame point maps from multi-view image sequences.<n>We employ a 4D flow predictor to identify moving objects within the scene to direct our network focus more on reconstructing these dynamic regions.<n>Driv3R outperforms previous frameworks in 4D dynamic scene reconstruction, achieving 15x faster inference speed.
arXiv Detail & Related papers (2024-12-09T18:58:03Z) - UniMLVG: Unified Framework for Multi-view Long Video Generation with Comprehensive Control Capabilities for Autonomous Driving [18.189392365510848]
UniMLVG is a unified framework designed to generate extended street multi-perspective videos.<n>Our framework achieves improvements of 48.2% in FID and 35.2% in FVD.
arXiv Detail & Related papers (2024-12-06T08:27:53Z) - DriveScape: Towards High-Resolution Controllable Multi-View Driving Video Generation [10.296670127024045]
DriveScape is an end-to-end framework for multi-view, 3D condition-guided video generation.
Our Bi-Directional Modulated Transformer (BiMot) ensures precise alignment of 3D structural information.
DriveScape excels in video generation performance, achieving state-of-the-art results on the nuScenes dataset with an FID score of 8.34 and an FVD score of 76.39.
arXiv Detail & Related papers (2024-09-09T09:43:17Z) - CoSEC: A Coaxial Stereo Event Camera Dataset for Autonomous Driving [15.611896480837316]
Event camera with high dynamic range has been applied in assisting frame camera for the multimodal fusion.
We propose a coaxial stereo event camera (CoSEC) dataset for autonomous driving.
arXiv Detail & Related papers (2024-08-16T02:55:10Z) - VIMI: Vehicle-Infrastructure Multi-view Intermediate Fusion for
Camera-based 3D Object Detection [17.22491199725569]
Vehicle-Infrastructure Cooperative 3D Object Detection (VIC3D) makes use of multi-view cameras from both vehicles and traffic infrastructure.
We propose a novel 3D object detection framework, Vehicles-Infrastructure Multi-view Intermediate fusion (VIMI)
VIMI achieves 15.61% overall AP_3D and 21.44% AP_BEV on the new VIC3D dataset, DAIR-V2X-C.
arXiv Detail & Related papers (2023-03-20T09:56:17Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
This paper presents a novel approach that views each tracklet as a continuous stream.
At each timestamp, only the current frame is fed into the network to interact with multi-frame historical features stored in a memory bank.
To enhance the utilization of multi-frame features for robust tracking, a contrastive sequence enhancement strategy is proposed.
arXiv Detail & Related papers (2023-03-14T02:58:27Z) - Know Your Surroundings: Panoramic Multi-Object Tracking by Multimodality
Collaboration [56.01625477187448]
We propose a MultiModality PAnoramic multi-object Tracking framework (MMPAT)
It takes both 2D panorama images and 3D point clouds as input and then infers target trajectories using the multimodality data.
We evaluate the proposed method on the JRDB dataset, where the MMPAT achieves the top performance in both the detection and tracking tasks.
arXiv Detail & Related papers (2021-05-31T03:16:38Z) - Motion-Attentive Transition for Zero-Shot Video Object Segmentation [99.44383412488703]
We present a Motion-Attentive Transition Network (MATNet) for zero-shot object segmentation.
An asymmetric attention block, called Motion-Attentive Transition (MAT), is designed within a two-stream encoder.
In this way, the encoder becomes deeply internative, allowing for closely hierarchical interactions between object motion and appearance.
arXiv Detail & Related papers (2020-03-09T16:58:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.