Unimodal Strategies in Density-Based Clustering
- URL: http://arxiv.org/abs/2506.21695v1
- Date: Thu, 26 Jun 2025 18:25:14 GMT
- Title: Unimodal Strategies in Density-Based Clustering
- Authors: Oron Nir, Jay Tenenbaum, Ariel Shamir,
- Abstract summary: We reveal a key property intrinsic to density-based clustering methods regarding the relation between the number of clusters and the neighborhood radius of core points.<n>We leverage this property to devise new strategies for finding appropriate values for the radius more efficiently based on the Ternary Search algorithm.<n>We validate our methodology through extensive applications across a range of high-dimensional, large-scale NLP, Audio, and Computer Vision tasks.
- Score: 15.581610184349731
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Density-based clustering methods often surpass centroid-based counterparts, when addressing data with noise or arbitrary data distributions common in real-world problems. In this study, we reveal a key property intrinsic to density-based clustering methods regarding the relation between the number of clusters and the neighborhood radius of core points - we empirically show that it is nearly unimodal, and support this claim theoretically in a specific setting. We leverage this property to devise new strategies for finding appropriate values for the radius more efficiently based on the Ternary Search algorithm. This is especially important for large scale data that is high-dimensional, where parameter tuning is computationally intensive. We validate our methodology through extensive applications across a range of high-dimensional, large-scale NLP, Audio, and Computer Vision tasks, demonstrating its practical effectiveness and robustness. This work not only offers a significant advancement in parameter control for density-based clustering but also broadens the understanding regarding the relations between their guiding parameters. Our code is available at https://github.com/oronnir/UnimodalStrategies.
Related papers
- An Enhanced Model-based Approach for Short Text Clustering [58.60681789677676]
Short text clustering has become increasingly important with the popularity of social media like Twitter, Google+, and Facebook.<n>Existing methods can be broadly categorized into two paradigms: topic model-based approaches and deep representation learning-based approaches.<n>We propose a collapsed Gibbs Sampling algorithm for the Dirichlet Multinomial Mixture model (GSDMM), which effectively handles the sparsity and high dimensionality of short texts.<n>Based on several aspects of GSDMM that warrant further refinement, we propose an improved approach, GSDMM+, designed to further optimize its performance.
arXiv Detail & Related papers (2025-07-18T10:07:42Z) - Depth-Based Local Center Clustering: A Framework for Handling Different Clustering Scenarios [46.164361878412656]
Cluster analysis plays a crucial role across numerous scientific and engineering domains.<n>Despite the wealth of clustering methods proposed over the past decades, each method is typically designed for specific scenarios.<n>In this paper, we propose depth-based clustering (DLCC)<n>DLCC makes use of a local version of data depth that is based on subsets of data
arXiv Detail & Related papers (2025-05-14T16:08:11Z) - Adaptive and Robust DBSCAN with Multi-agent Reinforcement Learning [53.527506374566485]
We propose a novel Adaptive and Robust DBSCAN with Multi-agent Reinforcement Learning cluster framework, namely AR-DBSCAN.<n>We show that AR-DBSCAN not only improves clustering accuracy by up to 144.1% and 175.3% in the NMI and ARI metrics, respectively, but also is capable of robustly finding dominant parameters.
arXiv Detail & Related papers (2025-05-07T11:37:23Z) - TNStream: Applying Tightest Neighbors to Micro-Clusters to Define Multi-Density Clusters in Streaming Data [1.2016321065590192]
This paper proposes a clustering algorithm based on the novel concept of Tightest Neighbors and introduces a data stream clustering theory based on the Skeleton Set.<n>Based on these theories, this paper develops a new method, TNStream, a fully online algorithm.<n> Experimental results demonstrate its effectiveness in improving clustering quality for multi-density data and validate the proposed data stream clustering theory.
arXiv Detail & Related papers (2025-05-01T07:15:20Z) - A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
Subset selection is a fundamental problem that can play a key role in identifying smaller portions of the training data.
We develop a novel factor 3-approximation algorithm to compute subsets based on the weighted sum of both k-center and uncertainty sampling objective functions.
arXiv Detail & Related papers (2023-12-17T04:41:07Z) - DECWA : Density-Based Clustering using Wasserstein Distance [1.4132765964347058]
We propose a new clustering algorithm based on spatial density and probabilistic approach.
We show that our approach outperforms other state-of-the-art density-based clustering methods on a wide variety of datasets.
arXiv Detail & Related papers (2023-10-25T11:10:08Z) - Local Sample-weighted Multiple Kernel Clustering with Consensus
Discriminative Graph [73.68184322526338]
Multiple kernel clustering (MKC) is committed to achieving optimal information fusion from a set of base kernels.
This paper proposes a novel local sample-weighted multiple kernel clustering model.
Experimental results demonstrate that our LSWMKC possesses better local manifold representation and outperforms existing kernel or graph-based clustering algo-rithms.
arXiv Detail & Related papers (2022-07-05T05:00:38Z) - Density-Based Clustering with Kernel Diffusion [59.4179549482505]
A naive density corresponding to the indicator function of a unit $d$-dimensional Euclidean ball is commonly used in density-based clustering algorithms.
We propose a new kernel diffusion density function, which is adaptive to data of varying local distributional characteristics and smoothness.
arXiv Detail & Related papers (2021-10-11T09:00:33Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
We propose an end-to-end deep clustering algorithm, i.e., Very Compact Clusters (VCC) for the general datasets.
Our proposed approach achieves better clustering performance over most of the state-of-the-art clustering methods.
arXiv Detail & Related papers (2021-06-09T23:22:03Z) - Learnable Subspace Clustering [76.2352740039615]
We develop a learnable subspace clustering paradigm to efficiently solve the large-scale subspace clustering problem.
The key idea is to learn a parametric function to partition the high-dimensional subspaces into their underlying low-dimensional subspaces.
To the best of our knowledge, this paper is the first work to efficiently cluster millions of data points among the subspace clustering methods.
arXiv Detail & Related papers (2020-04-09T12:53:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.