Performance Prediction for Large Systems via Text-to-Text Regression
- URL: http://arxiv.org/abs/2506.21718v1
- Date: Thu, 26 Jun 2025 19:10:08 GMT
- Title: Performance Prediction for Large Systems via Text-to-Text Regression
- Authors: Yash Akhauri, Bryan Lewandowski, Cheng-Hsi Lin, Adrian N. Reyes, Grant C. Forbes, Arissa Wongpanich, Bangding Yang, Mohamed S. Abdelfattah, Sagi Perel, Xingyou Song,
- Abstract summary: We propose text-to-text regression as a general, scalable alternative to traditional regression methods.<n>For predicting resource efficiency on Borg, Google's massive compute cluster scheduling system, a 60M parameter encoder-decoder is trained.<n>The model also easily adapts to new tasks in only 500 few-shot examples and captures the densities of complex outcome distributions.
- Score: 13.48548094460222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many industries, predicting metric outcomes of large systems is a fundamental problem, driven largely by traditional tabular regression. However, such methods struggle on complex systems data in the wild such as configuration files or system logs, where feature engineering is often infeasible. We propose text-to-text regression as a general, scalable alternative. For predicting resource efficiency on Borg, Google's massive compute cluster scheduling system, a 60M parameter encoder-decoder, trained from random initialization, achieves up to a near perfect 0.99 (0.9 average) rank correlation across the entire fleet, and 100x lower MSE than tabular approaches. The model also easily adapts to new tasks in only 500 few-shot examples and captures the densities of complex outcome distributions. Ablation studies highlight the importance of using encoders, increasing sequence length, and the model's inherent uncertainty quantification. These findings pave the way for universal simulators of real-world outcomes.
Related papers
- Enhanced accuracy through ensembling of randomly initialized auto-regressive models for time-dependent PDEs [0.0]
Autoregressive inference with machine learning models suffer from error accumulation over successive predictions, limiting their long-term accuracy.<n>We propose a deep ensemble framework to address this challenge, where multiple ML surrogate models are trained in parallel and aggregated during inference.<n>We validate the framework on three PDE-driven dynamical systems - stress evolution in heterogeneous microstructures, Gray-Scott reaction-diffusion, and planetary-scale shallow water system.
arXiv Detail & Related papers (2025-07-05T02:25:12Z) - Revisiting Randomization in Greedy Model Search [16.15551706774035]
We propose and analyze an ensemble of greedy forward selection estimators that are randomized by feature subsampling.<n>We design a novel implementation based on dynamic programming that greatly improves its computational efficiency.<n>Contrary to prevailing belief that randomized ensembling is analogous to shrinkage, we show that it can simultaneously reduce training error and degrees of freedom.
arXiv Detail & Related papers (2025-06-18T17:13:53Z) - Training-free Ultra Small Model for Universal Sparse Reconstruction in Compressed Sensing [39.36305648162564]
This paper proposes ultra-small artificial neural models called coefficients learning (CL)<n>CL enables training-free and rapid sparse reconstruction while inheriting the generality and interpretability of traditional iterative methods.<n>Compared to representative iterative methods, CLOMP improves efficiency by 100 to 1000 folds for large-scale data.
arXiv Detail & Related papers (2025-01-20T16:50:59Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
We propose Quantile Sub-Ensembles, a novel method to estimate uncertainty with ensemble of quantile-regression-based task networks.
Our method not only produces accurate imputations that is robust to high missing rates, but also is computationally efficient due to the fast training of its non-generative model.
arXiv Detail & Related papers (2023-12-03T05:52:30Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
We propose two strategies to learn from large-scale unlabeled data.
The first strategy performs a local neighborhood sampling to reduce the dataset size in each without violating neighborhood relationships.
A second strategy leverages a novel Re-Ranking technique, which has a lower time upper bound complexity and reduces the memory complexity from O(n2) to O(kn) with k n.
arXiv Detail & Related papers (2023-07-26T16:19:19Z) - How Does Generative Retrieval Scale to Millions of Passages? [68.98628807288972]
We conduct the first empirical study of generative retrieval techniques across various corpus scales.
We scale generative retrieval to millions of passages with a corpus of 8.8M passages and evaluating model sizes up to 11B parameters.
While generative retrieval is competitive with state-of-the-art dual encoders on small corpora, scaling to millions of passages remains an important and unsolved challenge.
arXiv Detail & Related papers (2023-05-19T17:33:38Z) - Scalable Estimation for Structured Additive Distributional Regression [0.0]
We propose a novel backfitting algorithm, which is based on the ideas of gradient descent and can deal virtually with any amount of data on a conventional laptop.
Performance is evaluated using an extensive simulation study and an exceptionally challenging and unique example of lightning count prediction over Austria.
arXiv Detail & Related papers (2023-01-13T14:59:42Z) - Variational Hierarchical Mixtures for Probabilistic Learning of Inverse
Dynamics [20.953728061894044]
Well-calibrated probabilistic regression models are a crucial learning component in robotics applications as datasets grow rapidly and tasks become more complex.
We consider a probabilistic hierarchical modeling paradigm that combines the benefits of both worlds to deliver computationally efficient representations with inherent complexity regularization.
We derive two efficient variational inference techniques to learn these representations and highlight the advantages of hierarchical infinite local regression models.
arXiv Detail & Related papers (2022-11-02T13:54:07Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - Superiority of Simplicity: A Lightweight Model for Network Device
Workload Prediction [58.98112070128482]
We propose a lightweight solution for series prediction based on historic observations.
It consists of a heterogeneous ensemble method composed of two models - a neural network and a mean predictor.
It achieves an overall $R2$ score of 0.10 on the available FedCSIS 2020 challenge dataset.
arXiv Detail & Related papers (2020-07-07T15:44:16Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.