論文の概要: Experimental investigation of pose informed reinforcement learning for skid-steered visual navigation
- arxiv url: http://arxiv.org/abs/2506.21732v1
- Date: Thu, 26 Jun 2025 19:36:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-30 21:12:22.991857
- Title: Experimental investigation of pose informed reinforcement learning for skid-steered visual navigation
- Title(参考訳): スキッドステアリング視覚ナビゲーションのためのポーズ情報強化学習の実験的検討
- Authors: Ameya Salvi, Venkat Krovi,
- Abstract要約: ビジョンに基づく車線維持は、ロボティクスと自動運転車コミュニティにおいて重要な関心事である。
スキッドステアリングの車両アーキテクチャは、人間の操作操作に有用な車両プラットフォームとして機能している。
本研究では,視覚ナビゲーション学習のための構造化定式化手法を提案する。
- 参考スコア(独自算出の注目度): 2.225268436173329
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-based lane keeping is a topic of significant interest in the robotics and autonomous ground vehicles communities in various on-road and off-road applications. The skid-steered vehicle architecture has served as a useful vehicle platform for human controlled operations. However, systematic modeling, especially of the skid-slip wheel terrain interactions (primarily in off-road settings) has created bottlenecks for automation deployment. End-to-end learning based methods such as imitation learning and deep reinforcement learning, have gained prominence as a viable deployment option to counter the lack of accurate analytical models. However, the systematic formulation and subsequent verification/validation in dynamic operation regimes (particularly for skid-steered vehicles) remains a work in progress. To this end, a novel approach for structured formulation for learning visual navigation is proposed and investigated in this work. Extensive software simulations, hardware evaluations and ablation studies now highlight the significantly improved performance of the proposed approach against contemporary literature.
- Abstract(参考訳): ビジョンベースの車線維持は、様々なオンロードおよびオフロードアプリケーションにおけるロボティクスと自動運転車コミュニティにおいて重要な関心事である。
スキッドステアリングの車両アーキテクチャは、人間の操作操作に有用な車両プラットフォームとして機能している。
しかし、システマティックモデリング、特にスキッド・スリップ・ホイールの地形相互作用(主にオフロード環境での)は、自動化デプロイメントのボトルネックを生み出している。
模倣学習や深層強化学習といったエンド・ツー・エンドの学習ベースの手法は、正確な分析モデルの欠如に対処する実行可能な展開オプションとして注目されている。
しかしながら、動的運用体制(特にスキッドステアリング車両)における体系的な定式化とその後の検証・検証は現在も進行中である。
そこで本研究では,視覚ナビゲーション学習のための構造化定式化手法を提案する。
大規模なソフトウェアシミュレーション、ハードウェア評価、アブレーション研究は、現代文学に対する提案手法の大幅な性能向上を浮き彫りにした。
関連論文リスト
- Guiding Attention in End-to-End Driving Models [49.762868784033785]
模倣学習によって訓練された視覚ベースのエンドツーエンドの運転モデルは、自動運転のための安価なソリューションにつながる可能性がある。
トレーニング中に損失項を追加することにより、これらのモデルの注意を誘導し、運転品質を向上させる方法について検討する。
従来の研究とは対照的に,本手法では,テスト期間中にこれらの有意義なセマンティックマップを利用できない。
論文 参考訳(メタデータ) (2024-04-30T23:18:51Z) - SEPT: Towards Efficient Scene Representation Learning for Motion
Prediction [19.111948522155004]
本稿では,自己教師付き学習を活用し,複雑な交通シーンのための強力なモデルを開発するためのモデリングフレームワークSEPTを提案する。
実験により、SEPTはアーキテクチャ設計や機能エンジニアリングを伴わず、Argoverse 1 と Argoverse 2 のモーション予測ベンチマークで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2023-09-26T21:56:03Z) - The Integration of Prediction and Planning in Deep Learning Automated Driving Systems: A Review [43.30610493968783]
我々は、最先端のディープラーニングベースの計画システムについてレビューし、どのように予測を統合するかに焦点を当てる。
異なる統合原則の意味、強み、限界について論じる。
論文 参考訳(メタデータ) (2023-08-10T17:53:03Z) - Machine Learning for Autonomous Vehicle's Trajectory Prediction: A
comprehensive survey, Challenges, and Future Research Directions [3.655021726150368]
AVの文脈における軌道予測に関する200以上の研究について検討した。
本総説では,いくつかの深層学習手法を総合的に評価する。
既存の文献の課題を特定し,潜在的研究の方向性を概説することにより,AV軌道予測領域における知識の進歩に大きく貢献する。
論文 参考訳(メタデータ) (2023-07-12T10:20:19Z) - KARNet: Kalman Filter Augmented Recurrent Neural Network for Learning
World Models in Autonomous Driving Tasks [11.489187712465325]
本稿では、フロントカメラ画像のみを用いて、交通流の潜在表現を学習するために、Kalmanフィルタの強化されたリカレントニューラルネットワークアーキテクチャを提案する。
その結果,車両の明示的なモデル(カルマンフィルタを用いて推定した状態)をエンドツーエンド学習に組み込むことで,性能が著しく向上した。
論文 参考訳(メタデータ) (2023-05-24T02:27:34Z) - Integration of Reinforcement Learning Based Behavior Planning With
Sampling Based Motion Planning for Automated Driving [0.5801044612920815]
本研究では,高度行動計画のための訓練された深層強化学習ポリシーを用いる方法を提案する。
私たちの知る限りでは、この研究は、この方法で深層強化学習を適用した最初のものである。
論文 参考訳(メタデータ) (2023-04-17T13:49:55Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
本稿では,車載マイクロシミュレーションの合理化手法について述べる。
最小限の手動設計で高性能な制御戦略を発見する。
この研究は、波動緩和、交通信号、ランプ計測に類似した多くの創発的挙動を明らかにしている。
論文 参考訳(メタデータ) (2022-07-30T16:23:45Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Self-Supervised Moving Vehicle Detection from Audio-Visual Cues [29.06503735149157]
本稿では,映像中の移動車両の検出に音声視覚的手がかりを活用する自己教師型アプローチを提案する。
提案手法では,画像と記録音声の対から画像中の車両を位置決めするのに対して,コントラスト学習を用いる。
そこで本研究では,教師が音声のみの検出モデルを監督するために,本モデルを利用できることを示す。
論文 参考訳(メタデータ) (2022-01-30T09:52:14Z) - Real-world Ride-hailing Vehicle Repositioning using Deep Reinforcement
Learning [52.2663102239029]
アイドルヘイリングプラットフォーム上での現実世界の車両の深層強化学習と意思決定時間計画に基づく新しい実用的枠組みを提示する。
本手法は,重み付きバッチ学習アルゴリズムを用いて乗車時の状態値関数を学習する。
配車シミュレーション環境におけるベースラインでアルゴリズムをベンチマークし、収益効率の向上における優位性を実証します。
論文 参考訳(メタデータ) (2021-03-08T05:34:05Z) - Affordance-based Reinforcement Learning for Urban Driving [3.507764811554557]
経路点と低次元視覚表現を用いた最適制御ポリシーを学習するための深層強化学習フレームワークを提案する。
スクラッチから訓練されたエージェントは、車線追従のタスクを学習し、区間間を走り回り、密集した交通状況でも他のアクターや信号機の前で立ち止まることを実証する。
論文 参考訳(メタデータ) (2021-01-15T05:21:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。