3D-Telepathy: Reconstructing 3D Objects from EEG Signals
- URL: http://arxiv.org/abs/2506.21843v1
- Date: Fri, 27 Jun 2025 01:26:52 GMT
- Title: 3D-Telepathy: Reconstructing 3D Objects from EEG Signals
- Authors: Yuxiang Ge, Jionghao Cheng, Ruiquan Ge, Zhaojie Fang, Gangyong Jia, Xiang Wan, Nannan Li, Ahmed Elazab, Changmiao Wang,
- Abstract summary: Reconstructing 3D visual stimuli from Electroencephalography (EEG) data holds significant potential for applications in Brain-Computer Interfaces (BCIs)<n>We propose an innovative EEG architecture that integrates a dual self-attention mechanism.<n>We use a hybrid training strategy to train the EEG, which includes cross-attention, contrastive learning, and self-supervised learning techniques.
- Score: 19.548597299697796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing 3D visual stimuli from Electroencephalography (EEG) data holds significant potential for applications in Brain-Computer Interfaces (BCIs) and aiding individuals with communication disorders. Traditionally, efforts have focused on converting brain activity into 2D images, neglecting the translation of EEG data into 3D objects. This limitation is noteworthy, as the human brain inherently processes three-dimensional spatial information regardless of whether observing 2D images or the real world. The neural activities captured by EEG contain rich spatial information that is inevitably lost when reconstructing only 2D images, thus limiting its practical applications in BCI. The transition from EEG data to 3D object reconstruction faces considerable obstacles. These include the presence of extensive noise within EEG signals and a scarcity of datasets that include both EEG and 3D information, which complicates the extraction process of 3D visual data. Addressing this challenging task, we propose an innovative EEG encoder architecture that integrates a dual self-attention mechanism. We use a hybrid training strategy to train the EEG Encoder, which includes cross-attention, contrastive learning, and self-supervised learning techniques. Additionally, by employing stable diffusion as a prior distribution and utilizing Variational Score Distillation to train a neural radiation field, we successfully generate 3D objects with similar content and structure from EEG data.
Related papers
- Towards Scalable Spatial Intelligence via 2D-to-3D Data Lifting [64.64738535860351]
We present a scalable pipeline that converts single-view images into comprehensive, scale- and appearance-realistic 3D representations.<n>Our method bridges the gap between the vast repository of imagery and the increasing demand for spatial scene understanding.<n>By automatically generating authentic, scale-aware 3D data from images, we significantly reduce data collection costs and open new avenues for advancing spatial intelligence.
arXiv Detail & Related papers (2025-07-24T14:53:26Z) - Neuro-3D: Towards 3D Visual Decoding from EEG Signals [49.502364730056044]
We introduce a new neuroscience task: decoding 3D visual perception from EEG signals.
We first present EEG-3D, a dataset featuring multimodal analysis data and EEG recordings from 12 subjects viewing 72 categories of 3D objects rendered in both videos and images.
We propose Neuro-3D, a 3D visual decoding framework based on EEG signals.
arXiv Detail & Related papers (2024-11-19T05:52:17Z) - EEG-Driven 3D Object Reconstruction with Style Consistency and Diffusion Prior [1.7205106391379026]
This paper proposes an EEG-based 3D object reconstruction method with style consistency and diffusion priors.
Through experimental validation, we demonstrate that this method can effectively use EEG data to reconstruct 3D objects with style consistency.
arXiv Detail & Related papers (2024-10-28T12:59:24Z) - Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
We design a novel 3D object representation learning method, Brain3D, that takes as input the fMRI data of a subject.
We show that our model captures the distinct functionalities of each region of human vision system.
Preliminary evaluations indicate that Brain3D can successfully identify the disordered brain regions in simulated scenarios.
arXiv Detail & Related papers (2024-05-24T06:06:11Z) - Generative Enhancement for 3D Medical Images [74.17066529847546]
We propose GEM-3D, a novel generative approach to the synthesis of 3D medical images.
Our method begins with a 2D slice, noted as the informed slice to serve the patient prior, and propagates the generation process using a 3D segmentation mask.
By decomposing the 3D medical images into masks and patient prior information, GEM-3D offers a flexible yet effective solution for generating versatile 3D images.
arXiv Detail & Related papers (2024-03-19T15:57:04Z) - MinD-3D: Reconstruct High-quality 3D objects in Human Brain [50.534007259536715]
Recon3DMind is an innovative task aimed at reconstructing 3D visuals from Functional Magnetic Resonance Imaging (fMRI) signals.
We present the fMRI-Shape dataset, which includes data from 14 participants and features 360-degree videos of 3D objects.
We propose MinD-3D, a novel and effective three-stage framework specifically designed to decode the brain's 3D visual information from fMRI signals.
arXiv Detail & Related papers (2023-12-12T18:21:36Z) - Learning Robust Deep Visual Representations from EEG Brain Recordings [13.768240137063428]
This study proposes a two-stage method where the first step is to obtain EEG-derived features for robust learning of deep representations.
We demonstrate the generalizability of our feature extraction pipeline across three different datasets using deep-learning architectures.
We propose a novel framework to transform unseen images into the EEG space and reconstruct them with approximation.
arXiv Detail & Related papers (2023-10-25T10:26:07Z) - Decoding Natural Images from EEG for Object Recognition [8.411976038504589]
This paper presents a self-supervised framework to demonstrate the feasibility of learning image representations from EEG signals.
We achieve a top-1 accuracy of 15.6% and a top-5 accuracy of 42.8% in challenging 200-way zero-shot tasks.
These findings yield valuable insights for neural decoding and brain-computer interfaces in real-world scenarios.
arXiv Detail & Related papers (2023-08-25T08:05:37Z) - ScanERU: Interactive 3D Visual Grounding based on Embodied Reference
Understanding [67.21613160846299]
Embodied Reference Understanding (ERU) is first designed for this concern.
New dataset called ScanERU is constructed to evaluate the effectiveness of this idea.
arXiv Detail & Related papers (2023-03-23T11:36:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.