論文の概要: TOAST: Task-Oriented Adaptive Semantic Transmission over Dynamic Wireless Environments
- arxiv url: http://arxiv.org/abs/2506.21900v1
- Date: Fri, 27 Jun 2025 04:36:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-30 21:12:23.084907
- Title: TOAST: Task-Oriented Adaptive Semantic Transmission over Dynamic Wireless Environments
- Title(参考訳): TOAST:動的無線環境におけるタスク指向適応意味伝達
- Authors: Sheng Yun, Jianhua Pei, Ping Wang,
- Abstract要約: TOAST(Task-Oriented Adaptive Semantic Transmission)は、無線環境におけるマルチタスク最適化の課題を解決するために設計された統合フレームワークである。
我々はマルコフ決定過程として適応的タスクバランスを定式化し、画像再構成の忠実度と意味分類の精度のトレードオフを動的に調整するために深層強化学習を用いる。
モジュール固有のLow-Rank Adaptation(LoRA)機構を,Swin Transformerベースのジョイントソースチャネル符号化アーキテクチャ全体に統合する。
- 参考スコア(独自算出の注目度): 3.3107717550009865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The evolution toward 6G networks demands a fundamental shift from bit-centric transmission to semantic-aware communication that emphasizes task-relevant information. This work introduces TOAST (Task-Oriented Adaptive Semantic Transmission), a unified framework designed to address the core challenge of multi-task optimization in dynamic wireless environments through three complementary components. First, we formulate adaptive task balancing as a Markov decision process, employing deep reinforcement learning to dynamically adjust the trade-off between image reconstruction fidelity and semantic classification accuracy based on real-time channel conditions. Second, we integrate module-specific Low-Rank Adaptation (LoRA) mechanisms throughout our Swin Transformer-based joint source-channel coding architecture, enabling parameter-efficient fine-tuning that dramatically reduces adaptation overhead while maintaining full performance across diverse channel impairments including Additive White Gaussian Noise (AWGN), fading, phase noise, and impulse interference. Third, we incorporate an Elucidating diffusion model that operates in the latent space to restore features corrupted by channel noises, providing substantial quality improvements compared to baseline approaches. Extensive experiments across multiple datasets demonstrate that TOAST achieves superior performance compared to baseline approaches, with significant improvements in both classification accuracy and reconstruction quality at low Signal-to-Noise Ratio (SNR) conditions while maintaining robust performance across all tested scenarios.
- Abstract(参考訳): 6Gネットワークへの進化は、ビット中心の伝送からタスク関連情報を強調するセマンティック・アウェア通信への根本的なシフトを要求する。
これは3つの相補的なコンポーネントを通して動的無線環境におけるマルチタスク最適化のコア課題に対処するために設計された統合されたフレームワークである。
まず,マルコフ決定過程として適応的タスクバランシングを定式化し,実時間チャネル条件に基づく画像再構成忠実度と意味分類精度とのトレードオフを動的に調整する。
第2に,Swin Transformerをベースとしたジョイントソースチャネル符号化アーキテクチャ全体にわたって,モジュール固有のローランド適応(LoRA)機構を統合し,適応オーバーヘッドを劇的に低減するとともに,付加白色ガウス雑音(AWGN),フェージング,位相雑音,インパルス干渉などの様々なチャネル障害に対して完全な性能を維持しながら,パラメータ効率のよい微調整を実現する。
第3に、チャネルノイズによって劣化した特徴を復元するために、潜時空間で機能するエルシディケート拡散モデルを導入し、ベースラインアプローチと比較して実質的な品質改善を提供する。
複数のデータセットにわたる大規模な実験により、TOASTはベースラインアプローチよりも優れたパフォーマンスを達成でき、低信号-雑音比(SNR)条件下での分類精度と再構成品質の両方が大幅に改善され、テストされたすべてのシナリオで堅牢なパフォーマンスを維持していることが示された。
関連論文リスト
- Adaptive Control Attention Network for Underwater Acoustic Localization and Domain Adaptation [8.017203108408973]
海洋における音源の局所化は、環境の複雑でダイナミックな性質のために難しい課題である。
本研究では,移動音源と受信機の距離を正確に予測するマルチブランチネットワークアーキテクチャを提案する。
提案手法は,SOTA(State-of-the-art)アプローチに類似した設定で優れる。
論文 参考訳(メタデータ) (2025-06-20T18:13:30Z) - Latent Diffusion Model Based Denoising Receiver for 6G Semantic Communication: From Stochastic Differential Theory to Application [55.42071552739813]
生成人工知能(GAI)を利用した新しい意味コミュニケーションフレームワークを提案する。
意味的特徴抽出のための変分オートエンコーダを組み合わせた潜在拡散モデル(LDM)に基づくセマンティックコミュニケーションフレームワークを提案する。
提案システムはゼロショットの一般化をサポートし,低SNRおよびアウト・オブ・ディストリビューション条件下での優れた性能を実現する訓練自由フレームワークである。
論文 参考訳(メタデータ) (2025-06-06T03:20:32Z) - Distributionally Robust Wireless Semantic Communication with Large AI Models [120.29419104482793]
6G無線システムは、超低レイテンシで大量のデータをサポートすることが期待されている。
従来のビットレベルの伝送戦略は、現代的なデータ集約型アプリケーションに必要な効率と適応性をサポートできない。
セマンティックコミュニケーション(SemCom)の概念は、生データの代わりにタスク関連セマンティック情報を伝達することに集中することで、この制限に対処する。
論文 参考訳(メタデータ) (2025-05-28T04:03:57Z) - Optimal Transport Adapter Tuning for Bridging Modality Gaps in Few-Shot Remote Sensing Scene Classification [80.83325513157637]
Few-Shot Remote Sensing Scene Classification (FS-RSSC)は,限られたラベル付きサンプルを用いたリモートセンシング画像の分類の課題を示す。
理想的なプラトン表現空間を構築することを目的とした,OTAT(Optimal Transport Adapter Tuning)フレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-19T07:04:24Z) - ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
既存の手法は、これらのタスクの要求に応えるために高い精度を優先する。
本稿では,3次元セマンティック占有率予測とフロー推定のための一連の改善点を紹介する。
私たちの純粋な時間的アーキテクチャフレームワークであるALOccは、速度と精度の最適なトレードオフを実現しています。
論文 参考訳(メタデータ) (2024-11-12T11:32:56Z) - Latent Diffusion Model-Enabled Low-Latency Semantic Communication in the Presence of Semantic Ambiguities and Wireless Channel Noises [18.539501941328393]
本稿では,ソースデータのアウトレイラを処理するために,遅延拡散モデルを用いたSemComシステムを開発した。
軽量な単層遅延空間変換アダプタは、送信機でのワンショット学習を完了させる。
終端整合蒸留法を用いて, 潜時空間で訓練した拡散模型を蒸留する。
論文 参考訳(メタデータ) (2024-06-09T23:39:31Z) - AdaStereo: An Efficient Domain-Adaptive Stereo Matching Approach [50.855679274530615]
本稿では,AdaStereoというドメイン適応型アプローチを提案する。
我々のモデルは、KITTI、Middlebury、ETH3D、DrivingStereoなど、複数のベンチマークで最先端のクロスドメイン性能を実現している。
提案手法は,様々なドメイン適応設定に対して堅牢であり,迅速な適応アプリケーションシナリオや実環境展開に容易に組み込むことができる。
論文 参考訳(メタデータ) (2021-12-09T15:10:47Z) - Conditioning Trick for Training Stable GANs [70.15099665710336]
本稿では,GANトレーニング中の不安定性問題に対応するため,ジェネレータネットワークに正規性から逸脱する条件付け手法を提案する。
我々は、生成元をシュア分解のスペクトル領域で計算された実サンプルの正規化関数から逸脱するように強制する。
論文 参考訳(メタデータ) (2020-10-12T16:50:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。