StableCodec: Taming One-Step Diffusion for Extreme Image Compression
- URL: http://arxiv.org/abs/2506.21977v1
- Date: Fri, 27 Jun 2025 07:39:21 GMT
- Title: StableCodec: Taming One-Step Diffusion for Extreme Image Compression
- Authors: Tianyu Zhang, Xin Luo, Li Li, Dong Liu,
- Abstract summary: Diffusion-based image compression has shown remarkable potential for achieving ultra-low coding (less than 0.05 bits per pixel) with high realism.<n>Current approaches require a large number of denoising steps at the decoder to generate realistic results under extreme constraints.<n>We introduce StableCodec, which enables one-step diffusion for high-fidelity and high-realism extreme image compression.
- Score: 19.69733852050049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion-based image compression has shown remarkable potential for achieving ultra-low bitrate coding (less than 0.05 bits per pixel) with high realism, by leveraging the generative priors of large pre-trained text-to-image diffusion models. However, current approaches require a large number of denoising steps at the decoder to generate realistic results under extreme bitrate constraints, limiting their application in real-time compression scenarios. Additionally, these methods often sacrifice reconstruction fidelity, as diffusion models typically fail to guarantee pixel-level consistency. To address these challenges, we introduce StableCodec, which enables one-step diffusion for high-fidelity and high-realism extreme image compression with improved coding efficiency. To achieve ultra-low bitrates, we first develop an efficient Deep Compression Latent Codec to transmit a noisy latent representation for a single-step denoising process. We then propose a Dual-Branch Coding Structure, consisting of a pair of auxiliary encoder and decoder, to enhance reconstruction fidelity. Furthermore, we adopt end-to-end optimization with joint bitrate and pixel-level constraints. Extensive experiments on the CLIC 2020, DIV2K, and Kodak dataset demonstrate that StableCodec outperforms existing methods in terms of FID, KID and DISTS by a significant margin, even at bitrates as low as 0.005 bits per pixel, while maintaining strong fidelity. Additionally, StableCodec achieves inference speeds comparable to mainstream transform coding schemes. All source code are available at https://github.com/LuizScarlet/StableCodec.
Related papers
- Steering One-Step Diffusion Model with Fidelity-Rich Decoder for Fast Image Compression [36.10674664089876]
SODEC is a novel single-step diffusion-based image compression model.<n>It improves fidelity resulting from over-reliance on generative priors.<n>It significantly outperforms existing methods, achieving superior rate-distortion-perception performance.
arXiv Detail & Related papers (2025-08-07T02:24:03Z) - SIEDD: Shared-Implicit Encoder with Discrete Decoders [36.705337163276255]
Implicit Neural Representations (INRs) offer exceptional fidelity for video compression by learning per-video optimized functions.<n>Existing attempts to accelerate INR encoding often sacrifice reconstruction quality or crucial coordinate-level control.<n>We introduce SIEDD, a novel architecture that fundamentally accelerates INR encoding without these compromises.
arXiv Detail & Related papers (2025-06-29T19:39:43Z) - DiffO: Single-step Diffusion for Image Compression at Ultra-Low Bitrates [7.344746778324299]
We propose the first single step diffusion model for image compression (DiffO) that delivers high perceptual quality and fast decoding at ultra lows.<n>Experiments show that DiffO surpasses state the art compression performance while improving decoding speed by 50x compared to prior diffusion-based methods.
arXiv Detail & Related papers (2025-06-19T19:53:27Z) - One-Step Diffusion-Based Image Compression with Semantic Distillation [25.910952778218146]
OneDC is a One-step Diffusion-based generative image Codec.<n>OneDC achieves perceptual quality even with one-step generation.
arXiv Detail & Related papers (2025-05-22T13:54:09Z) - Generative Latent Coding for Ultra-Low Bitrate Image and Video Compression [61.500904231491596]
Most approaches for image and video compression perform transform coding in the pixel space to reduce redundancy.<n>We propose textbfGenerative textbfLatent textbfCoding (textbfGLC) models for image and video compression, GLC-image and GLC-Video.
arXiv Detail & Related papers (2025-05-22T03:31:33Z) - DDT: Decoupled Diffusion Transformer [51.84206763079382]
Diffusion transformers encode noisy inputs to extract semantic component and decode higher frequency with identical modules.<n>textbfcolorddtDecoupled textbfcolorddtTransformer(textbfcolorddtDDT)<n>textbfcolorddtTransformer(textbfcolorddtDDT)<n>textbfcolorddtTransformer(textbfcolorddtDDT)
arXiv Detail & Related papers (2025-04-08T07:17:45Z) - Multi-Scale Invertible Neural Network for Wide-Range Variable-Rate Learned Image Compression [90.59962443790593]
In this paper, we present a variable-rate image compression model based on invertible transform to overcome limitations.<n> Specifically, we design a lightweight multi-scale invertible neural network, which maps the input image into multi-scale latent representations.<n> Experimental results demonstrate that the proposed method achieves state-of-the-art performance compared to existing variable-rate methods.
arXiv Detail & Related papers (2025-03-27T09:08:39Z) - REGEN: Learning Compact Video Embedding with (Re-)Generative Decoder [52.698595889988766]
We present a novel perspective on learning video embedders for generative modeling.<n>Rather than requiring an exact reproduction of an input video, an effective embedder should focus on visually plausible reconstructions.<n>We propose replacing the conventional encoder-decoder video embedder with an encoder-generator framework.
arXiv Detail & Related papers (2025-03-11T17:51:07Z) - HybridFlow: Infusing Continuity into Masked Codebook for Extreme Low-Bitrate Image Compression [51.04820313355164]
HyrbidFlow combines the continuous-feature-based and codebook-based streams to achieve both high perceptual quality and high fidelity under extreme lows.
Experimental results demonstrate superior performance across several datasets under extremely lows.
arXiv Detail & Related papers (2024-04-20T13:19:08Z) - Enhancing the Rate-Distortion-Perception Flexibility of Learned Image
Codecs with Conditional Diffusion Decoders [7.485128109817576]
We show that conditional diffusion models can lead to promising results in the generative compression task when used as a decoder.
In this paper, we show that conditional diffusion models can lead to promising results in the generative compression task when used as a decoder.
arXiv Detail & Related papers (2024-03-05T11:48:35Z) - MISC: Ultra-low Bitrate Image Semantic Compression Driven by Large Multimodal Model [78.4051835615796]
This paper proposes a method called Multimodal Image Semantic Compression.
It consists of an LMM encoder for extracting the semantic information of the image, a map encoder to locate the region corresponding to the semantic, an image encoder generates an extremely compressed bitstream, and a decoder reconstructs the image based on the above information.
It can achieve optimal consistency and perception results while saving perceptual 50%, which has strong potential applications in the next generation of storage and communication.
arXiv Detail & Related papers (2024-02-26T17:11:11Z) - Lossy Compression with Gaussian Diffusion [28.930398810600504]
We describe a novel lossy compression approach called DiffC which is based on unconditional diffusion generative models.
We implement a proof of concept and find that it works surprisingly well despite the lack of an encoder transform.
We show that a flow-based reconstruction achieves a 3 dB gain over ancestral sampling at highs.
arXiv Detail & Related papers (2022-06-17T16:46:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.