MirrorMe: Towards Realtime and High Fidelity Audio-Driven Halfbody Animation
- URL: http://arxiv.org/abs/2506.22065v1
- Date: Fri, 27 Jun 2025 09:57:23 GMT
- Title: MirrorMe: Towards Realtime and High Fidelity Audio-Driven Halfbody Animation
- Authors: Dechao Meng, Steven Xiao, Xindi Zhang, Guangyuan Wang, Peng Zhang, Qi Wang, Bang Zhang, Liefeng Bo,
- Abstract summary: MirrorMe is a real-time, controllable framework built on the LTX video model.<n>MirrorMe compresses video spatially and temporally for efficient latent space denoising.<n> experiments on the EMTD Benchmark demonstrate MirrorMe's state-of-the-art performance in fidelity, lip-sync accuracy, and temporal stability.
- Score: 21.216297567167036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Audio-driven portrait animation, which synthesizes realistic videos from reference images using audio signals, faces significant challenges in real-time generation of high-fidelity, temporally coherent animations. While recent diffusion-based methods improve generation quality by integrating audio into denoising processes, their reliance on frame-by-frame UNet architectures introduces prohibitive latency and struggles with temporal consistency. This paper introduces MirrorMe, a real-time, controllable framework built on the LTX video model, a diffusion transformer that compresses video spatially and temporally for efficient latent space denoising. To address LTX's trade-offs between compression and semantic fidelity, we propose three innovations: 1. A reference identity injection mechanism via VAE-encoded image concatenation and self-attention, ensuring identity consistency; 2. A causal audio encoder and adapter tailored to LTX's temporal structure, enabling precise audio-expression synchronization; and 3. A progressive training strategy combining close-up facial training, half-body synthesis with facial masking, and hand pose integration for enhanced gesture control. Extensive experiments on the EMTD Benchmark demonstrate MirrorMe's state-of-the-art performance in fidelity, lip-sync accuracy, and temporal stability.
Related papers
- READ: Real-time and Efficient Asynchronous Diffusion for Audio-driven Talking Head Generation [55.58089937219475]
We propose READ, the first real-time diffusion-transformer-based talking head generation framework.<n>Our approach first learns highly compressed video latent space via a VAE, significantly reducing the token count to speech generation.<n>We show that READ outperforms state-of-the-art methods by generating competitive talking head videos with significantly reduced runtime.
arXiv Detail & Related papers (2025-08-05T13:57:03Z) - MoDiT: Learning Highly Consistent 3D Motion Coefficients with Diffusion Transformer for Talking Head Generation [16.202732894319084]
MoDiT is a novel framework that combines the 3D Morphable Model (3DMM) with a Diffusion-based Transformer.<n>Our contributions include: (i) A hierarchical denoising strategy with revised temporal attention and biased self/cross-attention mechanisms, enabling the model to refine lip synchronization.<n> (ii) The integration of 3DMM coefficients to provide explicit spatial constraints, ensuring accurate 3D-informed optical flow prediction.
arXiv Detail & Related papers (2025-07-07T15:13:46Z) - Identity-Preserving Text-to-Video Generation Guided by Simple yet Effective Spatial-Temporal Decoupled Representations [66.97034863216892]
Identity-preserving text-to-video (IPT2V) generation aims to create high-fidelity videos with consistent human identity.<n>Current end-to-end frameworks suffer a critical spatial-temporal trade-off.<n>We propose a simple yet effective spatial-temporal decoupled framework that decomposes representations into spatial features for layouts and temporal features for motion dynamics.
arXiv Detail & Related papers (2025-07-07T06:54:44Z) - OmniSync: Towards Universal Lip Synchronization via Diffusion Transformers [13.623360048766603]
We present OmniSync, a universal lip synchronization framework for diverse visual scenarios.<n>Our approach introduces a mask-free training paradigm using Diffusion Transformer models for direct frame editing without explicit masks.<n>We also establish the AIGCLipSync Benchmark, the first evaluation suite for lip sync in AI-generated videos.
arXiv Detail & Related papers (2025-05-27T17:20:38Z) - AsynFusion: Towards Asynchronous Latent Consistency Models for Decoupled Whole-Body Audio-Driven Avatars [65.53676584955686]
Whole-body audio-driven avatar pose and expression generation is a critical task for creating lifelike digital humans.<n>We propose AsynFusion, a novel framework that leverages diffusion transformers to achieve cohesive expression and gesture synthesis.<n>AsynFusion achieves state-of-the-art performance in generating real-time, synchronized whole-body animations.
arXiv Detail & Related papers (2025-05-21T03:28:53Z) - Audio-Plane: Audio Factorization Plane Gaussian Splatting for Real-Time Talking Head Synthesis [56.749927786910554]
We propose a novel framework that integrates Gaussian Splatting with a structured Audio Factorization Plane (Audio-Plane) to enable high-quality, audio-synchronized, and real-time talking head generation.<n>Our method achieves state-of-the-art visual quality, precise audio-lip synchronization, and real-time performance, outperforming prior approaches across both 2D- and 3D-based paradigms.
arXiv Detail & Related papers (2025-03-28T16:50:27Z) - Dual Audio-Centric Modality Coupling for Talking Head Generation [4.03322932416974]
The generation of audio-driven talking head videos is a key challenge in computer vision and graphics, with applications in virtual avatars and digital media.<n>Traditional approaches often struggle with capturing the complex interaction between audio and facial dynamics, leading to lip synchronization and visual quality issues.<n>We propose a novel NeRF-based framework, Dual Audio-Centric Modality Coupling (DAMC), which effectively integrates content and dynamic features from audio inputs.
arXiv Detail & Related papers (2025-03-26T06:46:51Z) - Cosh-DiT: Co-Speech Gesture Video Synthesis via Hybrid Audio-Visual Diffusion Transformers [58.86974149731874]
Cosh-DiT is a Co-speech gesture video system with hybrid Diffusion Transformers.<n>We introduce an audio Diffusion Transformer to synthesize expressive gesture dynamics synchronized with speech rhythms.<n>For realistic video synthesis conditioned on the generated speech-driven motion, we design a visual Diffusion Transformer.
arXiv Detail & Related papers (2025-03-13T01:36:05Z) - MEMO: Memory-Guided Diffusion for Expressive Talking Video Generation [55.95148886437854]
Memory-guided EMOtion-aware diffusion (MEMO) is an end-to-end audio-driven portrait animation approach to generate talking videos.<n>MEMO generates more realistic talking videos across diverse image and audio types, outperforming state-of-the-art methods in overall quality, audio-lip synchronization, identity consistency, and expression-emotion alignment.
arXiv Detail & Related papers (2024-12-05T18:57:26Z) - Ditto: Motion-Space Diffusion for Controllable Realtime Talking Head Synthesis [27.43583075023949]
Ditto is a diffusion-based talking head framework that enables fine-grained controls and real-time inference.<n>We show that Ditto generates compelling talking head videos and exhibits superiority in both controllability and real-time performance.
arXiv Detail & Related papers (2024-11-29T07:01:31Z) - RealTalk: Real-time and Realistic Audio-driven Face Generation with 3D Facial Prior-guided Identity Alignment Network [48.95833484103569]
RealTalk is an audio-to-expression transformer and a high-fidelity expression-to-face framework.
In the first component, we consider both identity and intra-personal variation features related to speaking lip movements.
In the second component, we design a lightweight facial identity alignment (FIA) module.
This novel design allows us to generate fine details in real-time, without depending on sophisticated and inefficient feature alignment modules.
arXiv Detail & Related papers (2024-06-26T12:09:59Z) - Hallo: Hierarchical Audio-Driven Visual Synthesis for Portrait Image Animation [29.87407471246318]
This research delves into the complexities of synchronizing facial movements and creating visually appealing, temporally consistent animations.
Our innovative approach embraces the end-to-end diffusion paradigm and introduces a hierarchical audio-driven visual synthesis module.
The proposed hierarchical audio-driven visual synthesis offers adaptive control over expression and pose diversity, enabling more effective personalization tailored to different identities.
arXiv Detail & Related papers (2024-06-13T04:33:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.