Earthquake Damage Grades Prediction using An Ensemble Approach Integrating Advanced Machine and Deep Learning Models
- URL: http://arxiv.org/abs/2506.22129v1
- Date: Fri, 27 Jun 2025 11:12:37 GMT
- Title: Earthquake Damage Grades Prediction using An Ensemble Approach Integrating Advanced Machine and Deep Learning Models
- Authors: Anurag Panda, Gaurav Kumar Yadav,
- Abstract summary: This research deals with the problem of class imbalance with the help of the synthetic minority oversampling technique (SMOTE)<n>We delve into multiple multi-class classification machine learning, deep learning models, and ensembling methods to forecast structural damage grades.
- Score: 0.7018591019975254
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the aftermath of major earthquakes, evaluating structural and infrastructural damage is vital for coordinating post-disaster response efforts. This includes assessing damage's extent and spatial distribution to prioritize rescue operations and resource allocation. Accurately estimating damage grades to buildings post-earthquake is paramount for effective response and recovery, given the significant impact on lives and properties, underscoring the urgency of streamlining relief fund allocation processes. Previous studies have shown the effectiveness of multi-class classification, especially XGBoost, along with other machine learning models and ensembling methods, incorporating regularization to address class imbalance. One consequence of class imbalance is that it may give rise to skewed models that undervalue minority classes and give preference to the majority class. This research deals with the problem of class imbalance with the help of the synthetic minority oversampling technique (SMOTE). We delve into multiple multi-class classification machine learning, deep learning models, and ensembling methods to forecast structural damage grades. The study elucidates performance determinants through comprehensive feature manipulation experiments and diverse training approaches. It identifies key factors contributing to seismic vulnerability while evaluating model performance using techniques like the confusion matrix further to enhance understanding of the effectiveness of earthquake damage prediction.
Related papers
- Multiclass Post-Earthquake Building Assessment Integrating High-Resolution Optical and SAR Satellite Imagery, Ground Motion, and Soil Data with Transformers [0.0]
We introduce a framework that combines high-resolution post-earthquake satellite imagery with building-specific metadata relevant to the seismic performance of the structure.<n>Our model achieves state-of-the-art performance in multiclass post-earthquake damage identification for buildings from the Turkey-Syria earthquake on February 6, 2023.
arXiv Detail & Related papers (2024-12-05T23:19:51Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - Understanding Robust Overfitting from the Feature Generalization Perspective [61.770805867606796]
Adversarial training (AT) constructs robust neural networks by incorporating adversarial perturbations into natural data.
It is plagued by the issue of robust overfitting (RO), which severely damages the model's robustness.
In this paper, we investigate RO from a novel feature generalization perspective.
arXiv Detail & Related papers (2023-10-01T07:57:03Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - On the Robustness of Random Forest Against Untargeted Data Poisoning: An
Ensemble-Based Approach [42.81632484264218]
In machine learning models, perturbations of fractions of the training set (poisoning) can seriously undermine the model accuracy.
This paper aims to implement a novel hash-based ensemble approach that protects random forest against untargeted, random poisoning attacks.
arXiv Detail & Related papers (2022-09-28T11:41:38Z) - Classification of Buildings' Potential for Seismic Damage by Means of
Artificial Intelligence Techniques [0.0]
A large training dataset is used for the implementation of the classification algorithms.
The level of the seismic damage is expressed in terms of the Maximum Interstory Drift Ratio.
The most significant conclusion which is extracted is that the Machine Learning methods can be used to solve some of the most sophisticated real-world problems.
arXiv Detail & Related papers (2022-04-06T15:32:15Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - A Comparative Evaluation of Machine Learning Algorithms for the
Prediction of R/C Buildings' Seismic Damage [0.0]
The present paper attempts an extensive evaluation of the capability of various Machine Learning algorithms to predict the seismic response of R/C buildings.
A large-scale comparison study is utilized by the most efficient Machine Learning algorithms.
The experimentation shows that the LightGBM approach produces training stability, high overall performance and a remarkable coefficient of determination.
arXiv Detail & Related papers (2022-03-25T05:10:14Z) - Interpretability in Convolutional Neural Networks for Building Damage
Classification in Satellite Imagery [0.0]
We use a dataset that includes labeled pre- and post-disaster satellite imagery to assess building damage on a per-building basis.
We train multiple convolutional neural networks (CNNs) to assess building damage on a per-building basis.
Our research seeks to computationally contribute to aiding in this ongoing and growing humanitarian crisis, heightened by anthropogenic climate change.
arXiv Detail & Related papers (2022-01-24T16:55:56Z) - Clustering Effect of (Linearized) Adversarial Robust Models [60.25668525218051]
We propose a novel understanding of adversarial robustness and apply it on more tasks including domain adaption and robustness boosting.
Experimental evaluations demonstrate the rationality and superiority of our proposed clustering strategy.
arXiv Detail & Related papers (2021-11-25T05:51:03Z) - Analysis and Applications of Class-wise Robustness in Adversarial
Training [92.08430396614273]
Adversarial training is one of the most effective approaches to improve model robustness against adversarial examples.
Previous works mainly focus on the overall robustness of the model, and the in-depth analysis on the role of each class involved in adversarial training is still missing.
We provide a detailed diagnosis of adversarial training on six benchmark datasets, i.e., MNIST, CIFAR-10, CIFAR-100, SVHN, STL-10 and ImageNet.
We observe that the stronger attack methods in adversarial learning achieve performance improvement mainly from a more successful attack on the vulnerable classes.
arXiv Detail & Related papers (2021-05-29T07:28:35Z) - Controlling earthquake-like instabilities using artificial intelligence [0.0]
This study aims at avoiding these catastrophic events by the application of injection policies retrieved through reinforcement learning.
We show for the first time the possibility of controlling earthquake-like instabilities using state-of-the-art deep reinforcement learning techniques.
arXiv Detail & Related papers (2021-04-27T13:39:58Z) - Understanding and Diagnosing Vulnerability under Adversarial Attacks [62.661498155101654]
Deep Neural Networks (DNNs) are known to be vulnerable to adversarial attacks.
We propose a novel interpretability method, InterpretGAN, to generate explanations for features used for classification in latent variables.
We also design the first diagnostic method to quantify the vulnerability contributed by each layer.
arXiv Detail & Related papers (2020-07-17T01:56:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.