Controlling earthquake-like instabilities using artificial intelligence
- URL: http://arxiv.org/abs/2104.13180v1
- Date: Tue, 27 Apr 2021 13:39:58 GMT
- Title: Controlling earthquake-like instabilities using artificial intelligence
- Authors: Efthymios Papachristos and Ioannis Stefanou
- Abstract summary: This study aims at avoiding these catastrophic events by the application of injection policies retrieved through reinforcement learning.
We show for the first time the possibility of controlling earthquake-like instabilities using state-of-the-art deep reinforcement learning techniques.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Earthquakes are lethal and costly. This study aims at avoiding these
catastrophic events by the application of injection policies retrieved through
reinforcement learning. With the rapid growth of artificial intelligence,
prediction-control problems are all the more tackled by function approximation
models that learn how to control a specific task, even for systems with
unmodeled/unknown dynamics and important uncertainties. Here, we show for the
first time the possibility of controlling earthquake-like instabilities using
state-of-the-art deep reinforcement learning techniques. The controller is
trained using a reduced model of the physical system, i.e, the spring-slider
model, which embodies the main dynamics of the physical problem for a given
earthquake magnitude. Its robustness to unmodeled dynamics is explored through
a parametric study. Our study is a first step towards minimizing seismicity in
industrial projects (geothermal energy, hydrocarbons production, CO2
sequestration) while, in a second step for inspiring techniques for natural
earthquakes control and prevention.
Related papers
- Earthquake Damage Grades Prediction using An Ensemble Approach Integrating Advanced Machine and Deep Learning Models [0.7018591019975254]
This research deals with the problem of class imbalance with the help of the synthetic minority oversampling technique (SMOTE)<n>We delve into multiple multi-class classification machine learning, deep learning models, and ensembling methods to forecast structural damage grades.
arXiv Detail & Related papers (2025-06-27T11:12:37Z) - Dynamic Manipulation of Deformable Objects in 3D: Simulation, Benchmark and Learning Strategy [88.8665000676562]
Prior methods often simplify the problem to low-speed or 2D settings, limiting their applicability to real-world 3D tasks.<n>To mitigate data scarcity, we introduce a novel simulation framework and benchmark grounded in reduced-order dynamics.<n>We propose Dynamics Informed Diffusion Policy (DIDP), a framework that integrates imitation pretraining with physics-informed test-time adaptation.
arXiv Detail & Related papers (2025-05-23T03:28:25Z) - Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems [49.11170948406405]
State-of-the-art in automatic parameter estimation from video is addressed by training supervised deep networks on large datasets.
We propose a method to estimate the physical parameters of any known, continuous governing equation from single videos.
arXiv Detail & Related papers (2024-10-02T09:44:54Z) - Estimating Earthquake Magnitude in Sentinel-1 Imagery via Ranking [5.71478837100808]
We propose to pose the estimation of earthquake magnitudes as a metric-learning problem.
We train models to estimate earthquake magnitude from Sentinel-1 satellite imagery and to additionally rank pairwise samples.
Our experiments show at max a 30%+ improvement in MAE over prior regression-only based methods.
arXiv Detail & Related papers (2024-07-25T15:35:44Z) - Learning Physics for Unveiling Hidden Earthquake Ground Motions via Conditional Generative Modeling [43.056135090637646]
Conditional Generative Modeling for Ground Motion (CGM-GM)
We propose a novel artificial intelligence (AI) simulator to synthesize high-frequency and spatially continuous earthquake ground motion waveforms.
CGM-GM demonstrates a strong potential for outperforming a state-of-the-art non-ergodic empirical ground motion model.
arXiv Detail & Related papers (2024-07-21T08:23:37Z) - Exploring Challenges in Deep Learning of Single-Station Ground Motion
Records [0.0]
Experimental results reveal a strong reliance on the highly correlated P and S phase arrival information.
Our observations highlight a potential gap in the field, indicating an absence of robust methodologies for deep learning of single-station ground motion recordings.
arXiv Detail & Related papers (2024-03-12T11:56:50Z) - Interpretable Imitation Learning with Dynamic Causal Relations [65.18456572421702]
We propose to expose captured knowledge in the form of a directed acyclic causal graph.
We also design this causal discovery process to be state-dependent, enabling it to model the dynamics in latent causal graphs.
The proposed framework is composed of three parts: a dynamic causal discovery module, a causality encoding module, and a prediction module, and is trained in an end-to-end manner.
arXiv Detail & Related papers (2023-09-30T20:59:42Z) - Small-scale proxies for large-scale Transformer training instabilities [69.36381318171338]
We seek ways to reproduce and study training stability and instability at smaller scales.
By measuring the relationship between learning rate and loss across scales, we show that these instabilities also appear in small models when training at high learning rates.
We study methods such as warm-up, weight decay, and the $mu$Param to train small models that achieve similar losses across orders of magnitude of learning rate variation.
arXiv Detail & Related papers (2023-09-25T17:48:51Z) - Mining Causality from Continuous-time Dynamics Models: An Application to
Tsunami Forecasting [22.434845478979604]
We propose a mechanism for mining causal structures from continuous-time models.
We train models to capture the causal structure by enforcing sparsity in the weights of the input layers of the dynamics models.
We apply our method to a real-world problem, namely tsunami forecasting, where the exact causal-structures are difficult to characterize.
arXiv Detail & Related papers (2022-10-10T18:53:13Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - A CNN-BiLSTM Model with Attention Mechanism for Earthquake Prediction [0.0]
This paper proposes a novel prediction method based on attention mechanism (AM), convolution neural network (CNN), and bi-directional long short-term memory (BiLSTM) models.
It can predict the number and maximum magnitude of earthquakes in each area of mainland China-based on the earthquake catalog of the region.
arXiv Detail & Related papers (2021-12-26T20:16:20Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
Operational Space Control (OSC) has been used as an effective task-space controller for manipulation.
We propose OSC for Adaptation and Robustness (OSCAR), a data-driven variant of OSC that compensates for modeling errors.
We evaluate our method on a variety of simulated manipulation problems, and find substantial improvements over an array of controller baselines.
arXiv Detail & Related papers (2021-10-02T01:21:38Z) - Towards Understanding the Adversarial Vulnerability of Skeleton-based
Action Recognition [133.35968094967626]
Skeleton-based action recognition has attracted increasing attention due to its strong adaptability to dynamic circumstances.
With the help of deep learning techniques, it has also witnessed substantial progress and currently achieved around 90% accuracy in benign environment.
Research on the vulnerability of skeleton-based action recognition under different adversarial settings remains scant.
arXiv Detail & Related papers (2020-05-14T17:12:52Z) - Semiparametric Bayesian Forecasting of Spatial Earthquake Occurrences [77.68028443709338]
We propose a fully Bayesian formulation of the Epidemic Type Aftershock Sequence (ETAS) model.
The occurrence of the mainshock earthquakes in a geographical region is assumed to follow an inhomogeneous spatial point process.
arXiv Detail & Related papers (2020-02-05T10:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.