Enhancing Variational Quantum Algorithms for Multicriteria Optimization
- URL: http://arxiv.org/abs/2506.22159v1
- Date: Fri, 27 Jun 2025 12:15:22 GMT
- Title: Enhancing Variational Quantum Algorithms for Multicriteria Optimization
- Authors: Ivica Turkalj, Tom Ewen, Pascal Halffmann, Janik Maciejewski, Michael Trebing, Zakaria Abdelmoiz Dahi,
- Abstract summary: We introduce two key contributions to the field of variational quantum algorithms.<n>First, we reformulate the parameter optimization task of VQAs as a multicriteria problem.<n>Second, we propose a method that augments the hypervolume-based cost function with coverage-oriented indicators.
- Score: 0.19791587637442667
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents methodological improvements to variational quantum algorithms (VQAs) for solving multicriteria optimization problems. We introduce two key contributions. First, we reformulate the parameter optimization task of VQAs as a multicriteria problem, enabling the direct use of classical algorithms from various multicriteria metaheuristics. This hybrid framework outperforms the corresponding single-criteria VQAs in both average and worst-case performance across diverse benchmark problems. Second, we propose a method that augments the hypervolume-based cost function with coverage-oriented indicators, allowing explicit control over the diversity of the resulting Pareto front approximations. Experimental results show that our method can improve coverage by up to 40\% with minimal loss in hypervolume. Our findings highlight the potential of combining quantum variational methods with classical population-based search to advance practical quantum optimization.
Related papers
- A Comparative Study of Quantum Optimization Techniques for Solving Combinatorial Optimization Benchmark Problems [4.266376725904727]
We introduce a comprehensive benchmarking framework designed to evaluate quantum optimization techniques against well-established NP-hard problems.<n>Our framework focuses on key problem classes, including the Multi-Dimensional Knapsack Problem (MDKP), Maximum Independent Set (MIS), Quadratic Assignment Problem (QAP), and Market Share Problem (MSP)
arXiv Detail & Related papers (2025-03-15T13:02:22Z) - Benchmarking Metaheuristic-Integrated QAOA against Quantum Annealing [0.0]
The study provides insights into the strengths and limitations of both Quantum Annealing and metaheuristic-integrated QAOA across different problem domains.
The findings suggest that the hybrid approach can leverage classical optimization strategies to enhance the solution quality and convergence speed of QAOA.
arXiv Detail & Related papers (2023-09-28T18:55:22Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - A Comparative Study On Solving Optimization Problems With Exponentially
Fewer Qubits [0.0]
We evaluate and improve an algorithm based on Variational Quantum Eigensolver (VQE)
We highlight the numerical instabilities generated by encoding the problem into the variational ansatz.
We propose a classical optimization procedure to find the ground-state of the ansatz in less iterations with a better objective.
arXiv Detail & Related papers (2022-10-21T08:54:12Z) - ARES: An Efficient Algorithm with Recurrent Evaluation and Sampling-Driven Inference for Maximum Independent Set [48.57120672468062]
This paper introduces an efficient algorithm for the Maximum Independent Set (MIS) problem, incorporating two innovative techniques.<n>The proposed algorithm outperforms state-of-the-art algorithms in terms of solution quality, computational efficiency, and stability.
arXiv Detail & Related papers (2022-08-16T14:39:38Z) - Performance comparison of optimization methods on variational quantum
algorithms [2.690135599539986]
Variational quantum algorithms (VQAs) offer a promising path towards using near-term quantum hardware for applications in academic and industrial research.
We study the performance of four commonly used gradient-free optimization methods: SLSQP, COBYLA, CMA-ES, and SPSA.
arXiv Detail & Related papers (2021-11-26T12:13:20Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
We propose to reformulate the result diversification problem as a bi-objective search problem, and solve it by a multi-objective evolutionary algorithm (EA)
We theoretically prove that the GSEMO can achieve the optimal-time approximation ratio, $1/2$.
When the objective function changes dynamically, the GSEMO can maintain this approximation ratio in running time, addressing the open question proposed by Borodin et al.
arXiv Detail & Related papers (2021-10-18T14:00:22Z) - Quantum variational optimization: The role of entanglement and problem
hardness [0.0]
We study the role of entanglement, the structure of the variational quantum circuit, and the structure of the optimization problem.
Our numerical results indicate an advantage in adapting the distribution of entangling gates to the problem's topology.
We find evidence that applying conditional value at risk type cost functions improves the optimization, increasing the probability of overlap with the optimal solutions.
arXiv Detail & Related papers (2021-03-26T14:06:54Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z) - Multi-Task Multicriteria Hyperparameter Optimization [77.34726150561087]
The article begins with a mathematical formulation of the problem of choosing optimal hyperparameters.
The steps of the MTMC method that solves this problem are described.
The proposed method is evaluated on the image classification problem using a convolutional neural network.
arXiv Detail & Related papers (2020-02-15T12:47:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.