Frequency-Semantic Enhanced Variational Autoencoder for Zero-Shot Skeleton-based Action Recognition
- URL: http://arxiv.org/abs/2506.22179v1
- Date: Fri, 27 Jun 2025 12:44:08 GMT
- Title: Frequency-Semantic Enhanced Variational Autoencoder for Zero-Shot Skeleton-based Action Recognition
- Authors: Wenhan Wu, Zhishuai Guo, Chen Chen, Hongfei Xue, Aidong Lu,
- Abstract summary: Zero-shot skeleton-based action recognition aims to identify actions beyond the categories encountered during training.<n>Previous approaches have primarily focused on aligning visual and semantic representations.<n>We propose a Frequency-Semantic Enhanced Variational Autoencoder (FS-VAE) to explore the skeleton semantic representation learning with frequency decomposition.
- Score: 11.11236920942621
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Zero-shot skeleton-based action recognition aims to develop models capable of identifying actions beyond the categories encountered during training. Previous approaches have primarily focused on aligning visual and semantic representations but often overlooked the importance of fine-grained action patterns in the semantic space (e.g., the hand movements in drinking water and brushing teeth). To address these limitations, we propose a Frequency-Semantic Enhanced Variational Autoencoder (FS-VAE) to explore the skeleton semantic representation learning with frequency decomposition. FS-VAE consists of three key components: 1) a frequency-based enhancement module with high- and low-frequency adjustments to enrich the skeletal semantics learning and improve the robustness of zero-shot action recognition; 2) a semantic-based action description with multilevel alignment to capture both local details and global correspondence, effectively bridging the semantic gap and compensating for the inherent loss of information in skeleton sequences; 3) a calibrated cross-alignment loss that enables valid skeleton-text pairs to counterbalance ambiguous ones, mitigating discrepancies and ambiguities in skeleton and text features, thereby ensuring robust alignment. Evaluations on the benchmarks demonstrate the effectiveness of our approach, validating that frequency-enhanced semantic features enable robust differentiation of visually and semantically similar action clusters, improving zero-shot action recognition.
Related papers
- Multi-Modal Graph Convolutional Network with Sinusoidal Encoding for Robust Human Action Segmentation [10.122882293302787]
temporal segmentation of human actions is critical for intelligent robots in collaborative settings.<n>We propose a Multi-Modal Graph Convolutional Network (MMGCN) that integrates low-frame-rate (e.g., 1 fps) visual data with high-frame-rate (e.g., 30 fps) motion data.<n>Our approach outperforms state-of-the-art methods, especially in action segmentation accuracy.
arXiv Detail & Related papers (2025-07-01T13:55:57Z) - FreRA: A Frequency-Refined Augmentation for Contrastive Learning on Time Series Classification [56.925103708982164]
We present a novel perspective from the frequency domain and identify three advantages for downstream classification: global, independent, and compact.<n>We propose the lightweight yet effective Frequency Refined Augmentation (FreRA) tailored for time series contrastive learning on classification tasks.<n>FreRA consistently outperforms ten leading baselines on time series classification, anomaly detection, and transfer learning tasks.
arXiv Detail & Related papers (2025-05-29T07:18:28Z) - TDSM: Triplet Diffusion for Skeleton-Text Matching in Zero-Shot Action Recognition [25.341177384559174]
In zero-shot skeleton-based action recognition, aligning skeleton features with the text features of action labels is essential for accurately predicting unseen actions.<n>Our framework is designed as a Triplet Diffusion for Skeleton-Text Matching ( TDSM) method which aligns skeleton features with text prompts through reverse diffusion.<n>To enhance discriminative power, we introduce a novel triplet diffusion (TD) loss that encourages our TDSM to correct skeleton-text matches while pushing apart incorrect ones.
arXiv Detail & Related papers (2024-11-16T08:55:18Z) - SA-DVAE: Improving Zero-Shot Skeleton-Based Action Recognition by Disentangled Variational Autoencoders [7.618223798662929]
We propose SA-DVAE -- Semantic Alignment via Disentangled Variational Autoencoders.
We implement this idea via a pair of modality-specific variational autoencoders coupled with a total correction penalty.
Experiments show that SA-DAVE produces improved performance over existing methods.
arXiv Detail & Related papers (2024-07-18T12:35:46Z) - Part-aware Unified Representation of Language and Skeleton for Zero-shot Action Recognition [57.97930719585095]
We introduce Part-aware Unified Representation between Language and Skeleton (PURLS) to explore visual-semantic alignment at both local and global scales.
Our approach is evaluated on various skeleton/language backbones and three large-scale datasets.
The results showcase the universality and superior performance of PURLS, surpassing prior skeleton-based solutions and standard baselines from other domains.
arXiv Detail & Related papers (2024-06-19T08:22:32Z) - An Information Compensation Framework for Zero-Shot Skeleton-based Action Recognition [49.45660055499103]
Zero-shot human skeleton-based action recognition aims to construct a model that can recognize actions outside the categories seen during training.
Previous research has focused on aligning sequences' visual and semantic spatial distributions.
We introduce a new loss function sampling method to obtain a tight and robust representation.
arXiv Detail & Related papers (2024-06-02T06:53:01Z) - Multi-Semantic Fusion Model for Generalized Zero-Shot Skeleton-Based
Action Recognition [32.291333054680855]
Generalized zero-shot skeleton-based action recognition (GZSSAR) is a new challenging problem in computer vision community.
We propose a multi-semantic fusion (MSF) model for improving the performance of GZSSAR.
arXiv Detail & Related papers (2023-09-18T09:00:25Z) - Frequency Perception Network for Camouflaged Object Detection [51.26386921922031]
We propose a novel learnable and separable frequency perception mechanism driven by the semantic hierarchy in the frequency domain.<n>Our entire network adopts a two-stage model, including a frequency-guided coarse localization stage and a detail-preserving fine localization stage.<n>Compared with the currently existing models, our proposed method achieves competitive performance in three popular benchmark datasets.
arXiv Detail & Related papers (2023-08-17T11:30:46Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - Real-time Human Action Recognition Using Locally Aggregated
Kinematic-Guided Skeletonlet and Supervised Hashing-by-Analysis Model [30.435850177921086]
3D action recognition suffers from three problems: highly complicated articulation, a great amount of noise, and a low implementation efficiency.
We propose a real-time 3D action recognition framework by integrating the locally aggregated kinematic-guided skeletonlet (LAKS) with a supervised hashing-by-analysis (SHA) model.
Experimental results on MSRAction3D, UTKinectAction3D and Florence3DAction datasets demonstrate that the proposed method outperforms state-of-the-art methods in both recognition accuracy and implementation efficiency.
arXiv Detail & Related papers (2021-05-24T14:46:40Z) - A Self-Supervised Gait Encoding Approach with Locality-Awareness for 3D
Skeleton Based Person Re-Identification [65.18004601366066]
Person re-identification (Re-ID) via gait features within 3D skeleton sequences is a newly-emerging topic with several advantages.
This paper proposes a self-supervised gait encoding approach that can leverage unlabeled skeleton data to learn gait representations for person Re-ID.
arXiv Detail & Related papers (2020-09-05T16:06:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.