JointRank: Rank Large Set with Single Pass
- URL: http://arxiv.org/abs/2506.22262v1
- Date: Fri, 27 Jun 2025 14:30:12 GMT
- Title: JointRank: Rank Large Set with Single Pass
- Authors: Evgeny Dedov,
- Abstract summary: We propose a model-agnostic method for fast reranking large sets that exceed a model input limits.<n>We show that our method achieves an nDCG@10 of 70.88 compared to the 57.68 for full-context listwise approach.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficiently ranking relevant items from large candidate pools is a cornerstone of modern information retrieval systems -- such as web search, recommendation, and retrieval-augmented generation. Listwise rerankers, which improve relevance by jointly considering multiple candidates, are often limited in practice: either by model input size constraints, or by degraded quality when processing large sets. We propose a model-agnostic method for fast reranking large sets that exceed a model input limits. The method first partitions candidate items into overlapping blocks, each of which is ranked independently in parallel. Implicit pairwise comparisons are then derived from these local rankings. Finally, these comparisons are aggregated to construct a global ranking using algorithms such as Winrate or PageRank. Experiments on TREC DL-2019 show that our method achieves an nDCG@10 of 70.88 compared to the 57.68 for full-context listwise approach using gpt-4.1-mini as long-context model, while reducing latency from 21 to 8 seconds. The implementation of the algorithm and the experiments is available in the repository: https://github.com/V3RGANz/jointrank
Related papers
- TSPRank: Bridging Pairwise and Listwise Methods with a Bilinear Travelling Salesman Model [19.7255072094322]
Travelling Salesman Problem Rank (TSPRank) is a hybrid pairwise-listwise ranking method.<n>TSPRank's main advantage over existing methods is its ability to harness global information better while ranking.
arXiv Detail & Related papers (2024-11-18T21:10:14Z) - Top-Down Partitioning for Efficient List-Wise Ranking [24.600506147325717]
We propose a novel algorithm that partitions a ranking to depth k and processes documents top-down.
Our algorithm is inherently parallelizable due to the use of a pivot element, which can be compared to documents down to an arbitrary depth concurrently.
arXiv Detail & Related papers (2024-05-23T14:00:26Z) - List-aware Reranking-Truncation Joint Model for Search and
Retrieval-augmented Generation [80.12531449946655]
We propose a Reranking-Truncation joint model (GenRT) that can perform the two tasks concurrently.
GenRT integrates reranking and truncation via generative paradigm based on encoder-decoder architecture.
Our method achieves SOTA performance on both reranking and truncation tasks for web search and retrieval-augmented LLMs.
arXiv Detail & Related papers (2024-02-05T06:52:53Z) - HARRIS: Hybrid Ranking and Regression Forests for Algorithm Selection [75.84584400866254]
We propose a new algorithm selector leveraging special forests, combining the strengths of both approaches while alleviating their weaknesses.
HARRIS' decisions are based on a forest model, whose trees are created based on optimized on a hybrid ranking and regression loss function.
arXiv Detail & Related papers (2022-10-31T14:06:11Z) - Efficient computation of rankings from pairwise comparisons [0.0]
We describe an alternative and similarly simple iteration that provably returns identical results but does so much faster.
We demonstrate this algorithm with applications to a range of example data sets and derive a number of results regarding its convergence.
arXiv Detail & Related papers (2022-06-30T19:39:09Z) - Ranking with Confidence for Large Scale Comparison Data [2.486161976966064]
In this work, we leverage a generative data model considering comparison noise to develop a fast, precise, and informative ranking from pairwise comparisons.<n>In real data, PD-Rank requires less computational time to achieve the same Kendall algorithm than active learning methods.
arXiv Detail & Related papers (2022-02-03T16:36:37Z) - Heuristic Search for Rank Aggregation with Application to Label Ranking [16.275063634853584]
We propose an effective hybrid evolutionary ranking algorithm to solve the rank aggregation problem.
The algorithm features a semantic crossover based on concordant pairs and a late acceptance local search reinforced by an efficient incremental evaluation technique.
Experiments are conducted to assess the algorithm, indicating a highly competitive performance on benchmark instances.
arXiv Detail & Related papers (2022-01-11T11:43:17Z) - Multidimensional Assignment Problem for multipartite entity resolution [69.48568967931608]
Multipartite entity resolution aims at integrating records from multiple datasets into one entity.
We apply two procedures, a Greedy algorithm and a large scale neighborhood search, to solve the assignment problem.
We find evidence that design-based multi-start can be more efficient as the size of databases grow large.
arXiv Detail & Related papers (2021-12-06T20:34:55Z) - Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise
Comparisons [85.5955376526419]
In rank aggregation problems, users exhibit various accuracy levels when comparing pairs of items.
We propose an elimination-based active sampling strategy, which estimates the ranking of items via noisy pairwise comparisons.
We prove that our algorithm can return the true ranking of items with high probability.
arXiv Detail & Related papers (2021-10-08T13:51:55Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - LSF-Join: Locality Sensitive Filtering for Distributed All-Pairs Set
Similarity Under Skew [58.21885402826496]
All-pairs set similarity is a widely used data mining task, even for large and high-dimensional datasets.
We present a new distributed algorithm, LSF-Join, for approximate all-pairs set similarity.
We show that LSF-Join efficiently finds most close pairs, even for small similarity thresholds and for skewed input sets.
arXiv Detail & Related papers (2020-03-06T00:06:20Z) - Ranking a set of objects: a graph based least-square approach [70.7866286425868]
We consider the problem of ranking $N$ objects starting from a set of noisy pairwise comparisons provided by a crowd of equal workers.
We propose a class of non-adaptive ranking algorithms that rely on a least-squares intrinsic optimization criterion for the estimation of qualities.
arXiv Detail & Related papers (2020-02-26T16:19:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.