Excited States from ADAPT-VQE convergence path in Many-Body Problems: application to nuclear pairing problem and $H_4$ molecule dissociation
- URL: http://arxiv.org/abs/2506.22275v1
- Date: Fri, 27 Jun 2025 14:45:01 GMT
- Title: Excited States from ADAPT-VQE convergence path in Many-Body Problems: application to nuclear pairing problem and $H_4$ molecule dissociation
- Authors: Jing Zhang, Denis Lacroix,
- Abstract summary: A quantum computing algorithm is proposed to obtain low-lying excited states in many-body interacting systems.<n>The approximate eigenstates are obtained by using a quantum space diagonalization method in a subspace of states selected from the convergence path of the ADAPT-VQE.
- Score: 6.5877766193350675
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A quantum computing algorithm is proposed to obtain low-lying excited states in many-body interacting systems. The approximate eigenstates are obtained by using a quantum space diagonalization method in a subspace of states selected from the convergence path of the ADAPT-VQE (adaptive derivative-assembled pseudo-Trotter Ansatz variational quantum eigensolver) towards the ground state of the many-body problem. This method is shown to be accurate with only a small overhead in terms of quantum resources required to get the ground state. We also show that the quantum algorithm might be used to facilitate the convergence of the ADAPT-VQE method itself. Successful applications of the technique are made to like-particle pairing as well as neutron-proton pairing. Finally, the $H_4$ molecule's dissociation also illustrates the technique, demonstrating its accuracy and versatility.
Related papers
- Explicit Formulas for Estimating Trace of Reduced Density Matrix Powers via Single-Circuit Measurement Probabilities [10.43657724071918]
We propose a universal framework to simultaneously estimate the traces of the $2$nd to the $n$th powers of a reduced density matrix.<n>We develop two algorithms: a purely quantum method and a hybrid quantum-classical approach combining Newton-Girard iteration.<n>We explore various applications including the estimation of nonlinear functions and the representation of entanglement measures.
arXiv Detail & Related papers (2025-07-23T01:41:39Z) - Quantum Homogenization as a Quantum Steady State Protocol on NISQ Hardware [42.52549987351643]
Quantum homogenization is a reservoir-based quantum state approximation protocol.<n>We extend the standard quantum homogenization protocol to the dynamically-equivalent ($mathttSWAP$)$alpha$ formulation.<n>We show that our proposed protocol yields a completely positive, trace preserving (CPTP) map under which the code subspace is correctable.
arXiv Detail & Related papers (2024-12-19T05:50:54Z) - Variational Quantum Subspace Construction via Symmetry-Preserving Cost Functions [39.58317527488534]
We propose a variational strategy based on symmetry-preserving cost functions to iteratively construct a reduced subspace for extraction of low-lying energy states.<n>As a proof of concept, we test the proposed algorithms on H4 chain and ring, targeting both the ground-state energy and the charge gap.
arXiv Detail & Related papers (2024-11-25T20:33:47Z) - Challenging Excited States from Adaptive Quantum Eigensolvers: Subspace Expansions vs. State-Averaged Strategies [0.0]
ADAPT-VQE is a single-reference approach for obtaining ground states of molecules.<n> MORE-ADAPT-VQE is able to accurately describe both avoided crossings and crossings between states of different symmetries.<n>These improvements suggest a promising direction toward the use of quantum computers for difficult excited state problems.
arXiv Detail & Related papers (2024-09-17T14:03:27Z) - Subspace-Search Quantum Imaginary Time Evolution for Excited State Computations [0.0]
We introduce the em subspace search quantum imaginary time evolution (SSQITE) method, which calculates excited states using quantum devices.
With its robustness in avoiding local minima, SSQITE shows promise for advancing quantum computations of excited states across a wide range of applications.
arXiv Detail & Related papers (2024-07-15T19:14:45Z) - Benchmarking Variational Quantum Eigensolvers for Entanglement Detection in Many-Body Hamiltonian Ground States [37.69303106863453]
Variational quantum algorithms (VQAs) have emerged in recent years as a promise to obtain quantum advantage.
We use a specific class of VQA named variational quantum eigensolvers (VQEs) to benchmark them at entanglement witnessing and entangled ground state detection.
Quantum circuits whose structure is inspired by the Hamiltonian interactions presented better results on cost function estimation than problem-agnostic circuits.
arXiv Detail & Related papers (2024-07-05T12:06:40Z) - Quantum Davidson Algorithm for Excited States [42.666709382892265]
We introduce the quantum Krylov subspace (QKS) method to address both ground and excited states.
By using the residues of eigenstates to expand the Krylov subspace, we formulate a compact subspace that aligns closely with the exact solutions.
Using quantum simulators, we employ the novel QDavidson algorithm to delve into the excited state properties of various systems.
arXiv Detail & Related papers (2022-04-22T15:03:03Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Variational quantum solver employing the PDS energy functional [6.822193536884916]
A new class of quantum algorithms that are based on the quantum computation of the connected moment expansion has been reported to find the ground and excited state energies.
Here we find that the Peeters-Devreese-Soldatov (PDS) formulation is found variational and bearing the potential for further combining with the existing variational quantum infrastructure.
In comparison with the usual variational quantum eigensolver (VQE) and the original static PDS approach, this new variational quantum solver offers an effective approach to navigate the dynamics to be free from getting trapped in the local minima.
arXiv Detail & Related papers (2021-01-21T10:12:38Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.