CoATA: Effective Co-Augmentation of Topology and Attribute for Graph Neural Networks
- URL: http://arxiv.org/abs/2506.22299v1
- Date: Fri, 27 Jun 2025 15:11:49 GMT
- Title: CoATA: Effective Co-Augmentation of Topology and Attribute for Graph Neural Networks
- Authors: Tao Liu, Longlong Lin, Yunfeng Yu, Xi Ou, Youan Zhang, Zhiqiu Ye, Tao Jia,
- Abstract summary: CoATA is a dual-channel GNN framework specifically designed for the Co-Augmentation of Topology and Attribute.<n>CoATA introduces contrastive learning, leveraging prototype alignment and consistency constraints, to facilitate mutual corrections between the augmented and original graphs.
- Score: 4.284944931789759
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Graph Neural Networks (GNNs) have garnered substantial attention due to their remarkable capability in learning graph representations. However, real-world graphs often exhibit substantial noise and incompleteness, which severely degrades the performance of GNNs. Existing methods typically address this issue through single-dimensional augmentation, focusing either on refining topology structures or perturbing node attributes, thereby overlooking the deeper interplays between the two. To bridge this gap, this paper presents CoATA, a dual-channel GNN framework specifically designed for the Co-Augmentation of Topology and Attribute. Specifically, CoATA first propagates structural signals to enrich and denoise node attributes. Then, it projects the enhanced attribute space into a node-attribute bipartite graph for further refinement or reconstruction of the underlying structure. Subsequently, CoATA introduces contrastive learning, leveraging prototype alignment and consistency constraints, to facilitate mutual corrections between the augmented and original graphs. Finally, extensive experiments on seven benchmark datasets demonstrate that the proposed CoATA outperforms eleven state-of-the-art baseline methods, showcasing its effectiveness in capturing the synergistic relationship between topology and attributes.
Related papers
- Multi-Granular Attention based Heterogeneous Hypergraph Neural Network [5.580244361093485]
Heterogeneous graph neural networks (HeteGNNs) have demonstrated strong abilities to learn node representations.<n>This paper proposes MGA-HHN, a Multi-Granular Attention based Heterogeneous Hypergraph Neural Network for representation learning.
arXiv Detail & Related papers (2025-05-07T11:42:00Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
We introduce a feature-centric pretraining perspective by treating graph structure as a prior.
Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walks.
GSPT can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets.
arXiv Detail & Related papers (2024-06-19T22:30:08Z) - Efficient Topology-aware Data Augmentation for High-Degree Graph Neural Networks [2.7523980737007414]
We propose TADA, an efficient and effective front-mounted data augmentation framework for graph neural networks (GNNs) on high-degree graphs (HDGs)
Under the hood, TADA includes two key modules: (i) feature expansion with structure embeddings, and (ii) topology- and attribute-aware graph sparsification.
TADA considerably improves the predictive performance of mainstream GNN models on 8 real homophilic/heterophilic HDGs in terms of node classification.
arXiv Detail & Related papers (2024-06-08T14:14:19Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Topology-guided Hypergraph Transformer Network: Unveiling Structural Insights for Improved Representation [1.1606619391009658]
We propose a Topology-guided Hypergraph Transformer Network (THTN)
In this model, we first formulate a hypergraph from a graph while retaining its structural essence to learn higher-order relations within the graph.
We present a structure-aware self-attention mechanism that discovers the important nodes and hyperedges from both semantic and structural viewpoints.
arXiv Detail & Related papers (2023-10-14T20:08:54Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Topological Regularization for Graph Neural Networks Augmentation [12.190045459064413]
We propose a feature augmentation method for graph nodes based on topological regularization.
We have carried out extensive experiments on a large number of datasets to prove the effectiveness of our model.
arXiv Detail & Related papers (2021-04-03T01:37:44Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement [55.2456981313287]
We propose a new disentanglement enhancement framework for deep generative models for attributed graphs.
A novel variational objective is proposed to disentangle the above three types of latent factors, with novel architecture for node and edge deconvolutions.
Within each type, individual-factor-wise disentanglement is further enhanced, which is shown to be a generalization of the existing framework for images.
arXiv Detail & Related papers (2020-06-09T16:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.