Psycholinguistic Word Features: a New Approach for the Evaluation of LLMs Alignment with Humans
- URL: http://arxiv.org/abs/2506.22439v1
- Date: Thu, 29 May 2025 20:56:48 GMT
- Title: Psycholinguistic Word Features: a New Approach for the Evaluation of LLMs Alignment with Humans
- Authors: Javier Conde, Miguel González, María Grandury, Gonzalo Martínez, Pedro Reviriego, Mar Brysbaert,
- Abstract summary: We evaluate the alignment of a representative group of LLMs with human ratings on psycholinguistic datasets.<n>The results show that alignment is textcolorblackgenerally better in the Glasgow norms evaluated.<n>This suggests a potential limitation of current LLMs in aligning with human sensory associations for words.
- Score: 2.7013338932521416
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The evaluation of LLMs has so far focused primarily on how well they can perform different tasks such as reasoning, question-answering, paraphrasing, or translating. For most of these tasks, performance can be measured with objective metrics, such as the number of correct answers. However, other language features are not easily quantified. For example, arousal, concreteness, or gender associated with a given word, as well as the extent to which we experience words with senses and relate them to a specific sense. Those features have been studied for many years by psycholinguistics, conducting large-scale experiments with humans to produce ratings for thousands of words. This opens an opportunity to evaluate how well LLMs align with human ratings on these word features, taking advantage of existing studies that cover many different language features in a large number of words. In this paper, we evaluate the alignment of a representative group of LLMs with human ratings on two psycholinguistic datasets: the Glasgow and Lancaster norms. These datasets cover thirteen features over thousands of words. The results show that alignment is \textcolor{black}{generally} better in the Glasgow norms evaluated (arousal, valence, dominance, concreteness, imageability, familiarity, and gender) than on the Lancaster norms evaluated (introceptive, gustatory, olfactory, haptic, auditory, and visual). This suggests a potential limitation of current LLMs in aligning with human sensory associations for words, which may be due to their lack of embodied cognition present in humans and illustrates the usefulness of evaluating LLMs with psycholinguistic datasets.
Related papers
- How LLMs Comprehend Temporal Meaning in Narratives: A Case Study in Cognitive Evaluation of LLMs [13.822169295436177]
We investigate how large language models (LLMs) process the temporal meaning of linguistic aspect in narratives that were previously used in human studies.<n>Our findings show that LLMs over-rely on prototypicality, produce inconsistent aspectual judgments, and struggle with causal reasoning derived from aspect.<n>These results suggest that LLMs process aspect fundamentally differently from humans and lack robust narrative understanding.
arXiv Detail & Related papers (2025-07-18T18:28:35Z) - A Comparative Approach to Assessing Linguistic Creativity of Large Language Models and Humans [0.0]
The test consists of various tasks aimed at assessing their ability to generate new original words and phrases.<n>We administered the test to 24 humans and to an equal number of LLMs, and we automatically evaluated their answers using OCSAI tool for three criteria: Originality, Elaboration, and Flexibility.<n>The results show that LLMs not only outperformed humans in all the assessed criteria, but did better in six out of the eight test tasks.
arXiv Detail & Related papers (2025-07-16T08:56:19Z) - XToM: Exploring the Multilingual Theory of Mind for Large Language Models [57.9821865189077]
Existing evaluations of Theory of Mind in LLMs are largely limited to English.<n>We present XToM, a rigorously validated multilingual benchmark that evaluates ToM across five languages.<n>Our findings expose limitations in LLMs' ability to replicate human-like mentalizing across linguistic contexts.
arXiv Detail & Related papers (2025-06-03T05:23:25Z) - Beyond Keywords: Evaluating Large Language Model Classification of Nuanced Ableism [2.0435202333125977]
Large language models (LLMs) are increasingly used in decision-making tasks like r'esum'e screening and content moderation.<n>We evaluate the ability of four LLMs to identify nuanced ableism directed at autistic individuals.<n>Our results reveal that LLMs can identify autism-related language but often miss harmful or offensive connotations.
arXiv Detail & Related papers (2025-05-26T20:01:44Z) - How Deep is Love in LLMs' Hearts? Exploring Semantic Size in Human-like Cognition [75.11808682808065]
This study investigates whether large language models (LLMs) exhibit similar tendencies in understanding semantic size.<n>Our findings reveal that multi-modal training is crucial for LLMs to achieve more human-like understanding.<n> Lastly, we examine whether LLMs are influenced by attention-grabbing headlines with larger semantic sizes in a real-world web shopping scenario.
arXiv Detail & Related papers (2025-03-01T03:35:56Z) - LMLPA: Language Model Linguistic Personality Assessment [11.599282127259736]
Large Language Models (LLMs) are increasingly used in everyday life and research.
measuring the personality of a given LLM is currently a challenge.
This paper introduces the Language Model Linguistic Personality Assessment (LMLPA), a system designed to evaluate the linguistic personalities of LLMs.
arXiv Detail & Related papers (2024-10-23T07:48:51Z) - Rel-A.I.: An Interaction-Centered Approach To Measuring Human-LM Reliance [73.19687314438133]
We study how reliance is affected by contextual features of an interaction.
We find that contextual characteristics significantly affect human reliance behavior.
Our results show that calibration and language quality alone are insufficient in evaluating the risks of human-LM interactions.
arXiv Detail & Related papers (2024-07-10T18:00:05Z) - Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models [57.518784855080334]
Large Language Models (LLMs) have demonstrated exceptional task-solving capabilities, increasingly adopting roles akin to human-like assistants.
This paper presents a framework for investigating psychology dimension in LLMs, including psychological identification, assessment dataset curation, and assessment with results validation.
We introduce a comprehensive psychometrics benchmark for LLMs that covers six psychological dimensions: personality, values, emotion, theory of mind, motivation, and intelligence.
arXiv Detail & Related papers (2024-06-25T16:09:08Z) - Sociodemographic Prompting is Not Yet an Effective Approach for Simulating Subjective Judgments with LLMs [13.744746481528711]
Large Language Models (LLMs) are widely used to simulate human responses across diverse contexts.<n>We evaluate nine popular LLMs on their ability to understand demographic differences in two subjective judgment tasks: politeness and offensiveness.<n>We find that in zero-shot settings, most models' predictions for both tasks align more closely with labels from White participants than those from Asian or Black participants.
arXiv Detail & Related papers (2023-11-16T10:02:24Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
We propose a novel personality detection method, called PsyCoT, which mimics the way individuals complete psychological questionnaires in a multi-turn dialogue manner.
Our experiments demonstrate that PsyCoT significantly improves the performance and robustness of GPT-3.5 in personality detection.
arXiv Detail & Related papers (2023-10-31T08:23:33Z) - Revisiting the Reliability of Psychological Scales on Large Language Models [62.57981196992073]
This study aims to determine the reliability of applying personality assessments to Large Language Models.
Analysis of 2,500 settings per model, including GPT-3.5, GPT-4, Gemini-Pro, and LLaMA-3.1, reveals that various LLMs show consistency in responses to the Big Five Inventory.
arXiv Detail & Related papers (2023-05-31T15:03:28Z) - Using Natural Language Explanations to Rescale Human Judgments [81.66697572357477]
We propose a method to rescale ordinal annotations and explanations using large language models (LLMs)<n>We feed annotators' Likert ratings and corresponding explanations into an LLM and prompt it to produce a numeric score anchored in a scoring rubric.<n>Our method rescales the raw judgments without impacting agreement and brings the scores closer to human judgments grounded in the same scoring rubric.
arXiv Detail & Related papers (2023-05-24T06:19:14Z) - Can ChatGPT Assess Human Personalities? A General Evaluation Framework [70.90142717649785]
Large Language Models (LLMs) have produced impressive results in various areas, but their potential human-like psychology is still largely unexplored.
This paper presents a generic evaluation framework for LLMs to assess human personalities based on Myers Briggs Type Indicator (MBTI) tests.
arXiv Detail & Related papers (2023-03-01T06:16:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.