Innovative Research on IoT Architecture and Robotic Operating Platforms: Applications of Large Language Models and Generative AI
- URL: http://arxiv.org/abs/2506.22477v1
- Date: Sun, 22 Jun 2025 00:12:20 GMT
- Title: Innovative Research on IoT Architecture and Robotic Operating Platforms: Applications of Large Language Models and Generative AI
- Authors: Huiwen Han,
- Abstract summary: This paper introduces an innovative design for robotic operating platforms underpinned by a transformative Internet of Things (IoT) architecture.<n>It seamlessly integrates cutting-edge technologies such as large language models (LLMs), generative AI, edge computing, and 5G networks.<n>The proposed platform aims to elevate the intelligence and autonomy of IoT systems and robotics, enabling them to make real-time decisions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces an innovative design for robotic operating platforms, underpinned by a transformative Internet of Things (IoT) architecture, seamlessly integrating cutting-edge technologies such as large language models (LLMs), generative AI, edge computing, and 5G networks. The proposed platform aims to elevate the intelligence and autonomy of IoT systems and robotics, enabling them to make real-time decisions and adapt dynamically to changing environments. Through a series of compelling case studies across industries including smart manufacturing, healthcare, and service sectors, this paper demonstrates the substantial potential of IoT-enabled robotics to optimize operational workflows, enhance productivity, and deliver innovative, scalable solutions. By emphasizing the roles of LLMs and generative AI, the research highlights how these technologies drive the evolution of intelligent robotics and IoT, shaping the future of industry-specific advancements. The findings not only showcase the transformative power of these technologies but also offer a forward-looking perspective on their broader societal and industrial implications, positioning them as catalysts for next-generation automation and technological convergence.
Related papers
- AI Flow: Perspectives, Scenarios, and Approaches [53.820959266744474]
We introduce AI Flow, a framework that integrates cutting-edge IT and CT advancements.<n>First, device-edge-cloud framework serves as the foundation, which integrates end devices, edge servers, and cloud clusters.<n>Second, we introduce the concept of familial models, which refers to a series of different-sized models with aligned hidden features.<n>Third, connectivity- and interaction-based intelligence emergence is a novel paradigm of AI Flow.
arXiv Detail & Related papers (2025-06-14T12:43:07Z) - Generative AI for Autonomous Driving: Frontiers and Opportunities [145.6465312554513]
This survey delivers a comprehensive synthesis of the emerging role of GenAI across the autonomous driving stack.<n>We begin by distilling the principles and trade-offs of modern generative modeling, encompassing VAEs, GANs, Diffusion Models, and Large Language Models.<n>We categorize practical applications, such as synthetic data generalization, end-to-end driving strategies, high-fidelity digital twin systems, smart transportation networks, and cross-domain transfer to embodied AI.
arXiv Detail & Related papers (2025-05-13T17:59:20Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications.<n>Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems.<n>This survey provides a structured tutorial on fundamental architectures, enabling technologies, and emerging applications.
arXiv Detail & Related papers (2025-05-03T13:55:38Z) - Transforming the Hybrid Cloud for Emerging AI Workloads [82.21522417363666]
This white paper envisions transforming hybrid cloud systems to meet the growing complexity of AI workloads.<n>The proposed framework addresses critical challenges in energy efficiency, performance, and cost-effectiveness.<n>This joint initiative aims to establish hybrid clouds as secure, efficient, and sustainable platforms.
arXiv Detail & Related papers (2024-11-20T11:57:43Z) - Boardwalk Empire: How Generative AI is Revolutionizing Economic Paradigms [0.0]
Deep generative models, an integration of generative and deep learning techniques, excel in creating new data beyond analyzing existing ones.
By automating design, optimization, and innovation cycles, Generative AI is reshaping core industrial processes.
In the financial sector, it is transforming risk assessment, trading strategies, and forecasting, demonstrating its profound impact.
arXiv Detail & Related papers (2024-10-19T20:57:16Z) - Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Unveiling AI's Potential Through Tools, Techniques, and Applications [17.624263707781655]
Artificial intelligence (AI), machine learning, and deep learning have become transformative forces in big data analytics and management.<n>This article delves into the foundational concepts and cutting-edge developments in these fields.<n>By bridging theoretical underpinnings with actionable strategies, it showcases the potential of AI and LLMs to revolutionize big data management.
arXiv Detail & Related papers (2024-10-02T06:24:51Z) - Integrating Artificial Intelligence into Operating Systems: A Comprehensive Survey on Techniques, Applications, and Future Directions [16.28550500194823]
fusion of Artificial Intelligence with Operating Systems emerges as a critical frontier for innovation.<n>Current status of AI-OS integration, accentuating its pivotal role in steering the evolution of advanced computing paradigms.<n>Future prospects of Intelligent Operating Systems, debating how groundbreaking OS designs will usher in novel possibilities.
arXiv Detail & Related papers (2024-07-19T05:29:34Z) - Human-Centered Automation [0.3626013617212666]
The paper argues for the emerging area of Human-Centered Automation (HCA), which prioritizes user needs and preferences in the design and development of automation systems.
The paper discusses the limitations of existing automation approaches, the challenges in integrating AI and RPA, and the benefits of human-centered automation for productivity, innovation, and democratizing access to these technologies.
arXiv Detail & Related papers (2024-05-24T22:12:28Z) - From Generative AI to Generative Internet of Things: Fundamentals,
Framework, and Outlooks [82.964958051535]
Generative Artificial Intelligence (GAI) possesses the capabilities of generating realistic data and facilitating advanced decision-making.
By integrating GAI into modern Internet of Things (IoT), Generative Internet of Things (GIoT) is emerging and holds immense potential to revolutionize various aspects of society.
arXiv Detail & Related papers (2023-10-27T02:58:11Z) - Computational Rational Engineering and Development: Synergies and
Opportunities [0.0]
This paper surveys progress and formulates perspectives targeted on the automation and autonomization of engineering development processes.
In order to go beyond conventional human-centered, tool-based CAE approaches, it is suggested to extend the framework of Computational Rationality to challenges in design, engineering and development.
arXiv Detail & Related papers (2021-12-27T19:11:34Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
An Intelligent IoT Environment (iIoTe) is comprised of heterogeneous devices that can collaboratively execute semi-autonomous IoT applications.
This paper provides a state-of-the-art overview of these technologies and illustrates their functionality and performance, with special attention to the tradeoff among resources, latency, privacy and energy consumption.
arXiv Detail & Related papers (2021-10-04T19:41:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.