Computational Rational Engineering and Development: Synergies and
Opportunities
- URL: http://arxiv.org/abs/2201.06922v1
- Date: Mon, 27 Dec 2021 19:11:34 GMT
- Title: Computational Rational Engineering and Development: Synergies and
Opportunities
- Authors: Ramses Sala
- Abstract summary: This paper surveys progress and formulates perspectives targeted on the automation and autonomization of engineering development processes.
In order to go beyond conventional human-centered, tool-based CAE approaches, it is suggested to extend the framework of Computational Rationality to challenges in design, engineering and development.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Research and development in computer technology and computational methods
have resulted in a wide variety of valuable tools for Computer-Aided
Engineering (CAE) and Industrial Engineering. However, despite the exponential
increase in computational capabilities and Artificial Intelligence (AI)
methods, many of the visionary perspectives on cybernetic automation of design,
engineering, and development have not been successfully pursued or realized
yet. While contemporary research trends and movements such as Industry 4.0
primarily target progress by connected automation in manufacturing and
production, the objective of this paper is to survey progress and formulate
perspectives targeted on the automation and autonomization of engineering
development processes. Based on an interdisciplinary mini-review, this work
identifies open challenges, synergies, and research opportunities towards the
realization of resource-efficient cooperative engineering and development
systems. In order to go beyond conventional human-centered, tool-based CAE
approaches and realize Computational Intelligence Driven Development processes,
it is suggested to extend the framework of Computational Rationality to
challenges in design, engineering and development.
Related papers
- Generative AI Application for Building Industry [10.154329382433213]
This paper investigates the transformative potential of generative AI technologies, particularly large language models (LLMs) in the building industry.
The research highlights how LLMs can automate labor-intensive processes, significantly improving efficiency, accuracy, and safety in building practices.
arXiv Detail & Related papers (2024-10-01T21:59:08Z) - Networking Systems for Video Anomaly Detection: A Tutorial and Survey [55.28514053969056]
Video Anomaly Detection (VAD) is a fundamental research task within the Artificial Intelligence (AI) community.
In this article, we delineate the foundational assumptions, learning frameworks, and applicable scenarios of various deep learning-driven VAD routes.
We showcase our latest NSVAD research in industrial IoT and smart cities, along with an end-cloud collaborative architecture for deployable NSVAD.
arXiv Detail & Related papers (2024-05-16T02:00:44Z) - Bridging Gaps, Building Futures: Advancing Software Developer Diversity and Inclusion Through Future-Oriented Research [50.545824691484796]
We present insights from SE researchers and practitioners on challenges and solutions regarding diversity and inclusion in SE.
We share potential utopian and dystopian visions of the future and provide future research directions and implications for academia and industry.
arXiv Detail & Related papers (2024-04-10T16:18:11Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Designing an AI-Driven Talent Intelligence Solution: Exploring Big Data
to extend the TOE Framework [0.0]
This study aims to identify the new requirements for developing AI-oriented artifacts to address talent management issues.
A design science method is adopted for conducting the experimental study with structured machine learning techniques.
arXiv Detail & Related papers (2022-07-25T10:42:50Z) - Enabling Design Methodologies and Future Trends forEdge AI:
Specialization and Co-design [37.54971466190214]
We provide a comprehensive survey of the latest enabling design methodologies that span the entire edge AI development stack.
We suggest that the key methodologies for effective edge AI development are single-layer specialization and cross-layer co-design.
arXiv Detail & Related papers (2021-03-25T16:29:55Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes.
We elaborate on the utilization of a Genetic Algorithm and Neural Network to propose an intelligent feature selection algorithm.
arXiv Detail & Related papers (2020-08-29T14:57:53Z) - Convergence of Artificial Intelligence and High Performance Computing on
NSF-supported Cyberinfrastructure [3.4291439418246177]
Artificial Intelligence (AI) applications have powered transformational solutions for big data challenges in industry and technology.
As AI continues to evolve into a computing paradigm endowed with statistical and mathematical rigor, it has become apparent that single- GPU solutions for training, validation, and testing are no longer sufficient.
This realization has been driving the confluence of AI and high performance computing to reduce time-to-insight.
arXiv Detail & Related papers (2020-03-18T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.