Hallucination Detection with Small Language Models
- URL: http://arxiv.org/abs/2506.22486v1
- Date: Tue, 24 Jun 2025 02:19:26 GMT
- Title: Hallucination Detection with Small Language Models
- Authors: Ming Cheung,
- Abstract summary: This paper proposes a framework that integrates multiple small language models to verify responses generated by large language models.<n>The results demonstrate a 10% improvement in F1 scores for detecting correct responses compared to hallucinations.
- Score: 1.9181612035055007
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Since the introduction of ChatGPT, large language models (LLMs) have demonstrated significant utility in various tasks, such as answering questions through retrieval-augmented generation. Context can be retrieved using a vectorized database, serving as a foundation for LLMs to generate responses. However, hallucinations in responses can undermine the reliability of LLMs in practical applications, and they are not easily detectable in the absence of ground truth, particularly in question-and-answer scenarios. This paper proposes a framework that integrates multiple small language models to verify responses generated by LLMs using the retrieved context from a vectorized database. By breaking down the responses into individual sentences and utilizing the probability of generating "Yes" tokens from the outputs of multiple models for a given set of questions, responses, and relevant context, hallucinations can be detected. The proposed framework is validated through experiments with real datasets comprising over 100 sets of questions, answers, and contexts, including responses with fully and partially correct sentences. The results demonstrate a 10\% improvement in F1 scores for detecting correct responses compared to hallucinations, indicating that multiple small language models can be effectively employed for answer verification, providing a scalable and efficient solution for both academic and practical applications.
Related papers
- LargePiG: Your Large Language Model is Secretly a Pointer Generator [15.248956952849259]
We introduce relevance hallucination and factuality hallucination as a new typology for hallucination problems brought by query generation based on Large Language Models (LLMs)
We propose an effective way to separate content from form in LLM-generated queries, which preserves the factual knowledge extracted and integrated from the inputs and compiles the syntactic structure, including function words, using the powerful linguistic capabilities of the LLM.
arXiv Detail & Related papers (2024-10-15T07:41:40Z) - LongHalQA: Long-Context Hallucination Evaluation for MultiModal Large Language Models [96.64960606650115]
LongHalQA is an LLM-free hallucination benchmark that comprises 6K long and complex hallucination text.
LongHalQA is featured by GPT4V-generated hallucinatory data that are well aligned with real-world scenarios.
arXiv Detail & Related papers (2024-10-13T18:59:58Z) - Hallucination Detection: Robustly Discerning Reliable Answers in Large Language Models [70.19081534515371]
Large Language Models (LLMs) have gained widespread adoption in various natural language processing tasks.
They generate unfaithful or inconsistent content that deviates from the input source, leading to severe consequences.
We propose a robust discriminator named RelD to effectively detect hallucination in LLMs' generated answers.
arXiv Detail & Related papers (2024-07-04T18:47:42Z) - Crafting Interpretable Embeddings by Asking LLMs Questions [89.49960984640363]
Large language models (LLMs) have rapidly improved text embeddings for a growing array of natural-language processing tasks.
We introduce question-answering embeddings (QA-Emb), embeddings where each feature represents an answer to a yes/no question asked to an LLM.
We use QA-Emb to flexibly generate interpretable models for predicting fMRI voxel responses to language stimuli.
arXiv Detail & Related papers (2024-05-26T22:30:29Z) - Effective Large Language Model Adaptation for Improved Grounding and Citation Generation [48.07830615309543]
This paper focuses on improving large language models (LLMs) by grounding their responses in retrieved passages and by providing citations.
We propose a new framework, AGREE, that improves the grounding from a holistic perspective.
Our framework tunes LLMs to selfground the claims in their responses and provide accurate citations to retrieved documents.
arXiv Detail & Related papers (2023-11-16T03:22:25Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - Enhancing In-Context Learning with Answer Feedback for Multi-Span
Question Answering [9.158919909909146]
In this paper, we propose a novel way of employing labeled data such as it informs LLM of some undesired output.
Experiments on three multi-span question answering datasets and a keyphrase extraction dataset show that our new prompting strategy consistently improves LLM's in-context learning performance.
arXiv Detail & Related papers (2023-06-07T15:20:24Z) - SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for
Generative Large Language Models [55.60306377044225]
"SelfCheckGPT" is a simple sampling-based approach to fact-check the responses of black-box models.
We investigate this approach by using GPT-3 to generate passages about individuals from the WikiBio dataset.
arXiv Detail & Related papers (2023-03-15T19:31:21Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.