Masked Autoencoders that Feel the Heart: Unveiling Simplicity Bias for ECG Analyses
- URL: http://arxiv.org/abs/2506.22495v4
- Date: Mon, 28 Jul 2025 01:29:14 GMT
- Title: Masked Autoencoders that Feel the Heart: Unveiling Simplicity Bias for ECG Analyses
- Authors: He-Yang Xu, Hongxiang Gao, Yuwen Li, Xiu-Shen Wei, Chengyu Liu,
- Abstract summary: We show that ECG models tend to overfit dominant and repetitive patterns, overlooking fine-grained but clinically critical cues, known as Simplicity Bias (SB)<n>We propose a novel method comprising two key components: 1) Temporal-frequency aware Filters to capture temporal-frequency features reflecting the dynamic characteristics of ECG signals, and 2) building on this, Multi-Grained Prototype Reconstruction for coarse and fine representation learning across dual domains, further mitigating SB.
- Score: 24.039917512972977
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The diagnostic value of electrocardiogram (ECG) lies in its dynamic characteristics, ranging from rhythm fluctuations to subtle waveform deformations that evolve across time and frequency domains. However, supervised ECG models tend to overfit dominant and repetitive patterns, overlooking fine-grained but clinically critical cues, a phenomenon known as Simplicity Bias (SB), where models favor easily learnable signals over subtle but informative ones. In this work, we first empirically demonstrate the presence of SB in ECG analyses and its negative impact on diagnostic performance, while simultaneously discovering that self-supervised learning (SSL) can alleviate it, providing a promising direction for tackling the bias. Following the SSL paradigm, we propose a novel method comprising two key components: 1) Temporal-Frequency aware Filters to capture temporal-frequency features reflecting the dynamic characteristics of ECG signals, and 2) building on this, Multi-Grained Prototype Reconstruction for coarse and fine representation learning across dual domains, further mitigating SB. To advance SSL in ECG analyses, we curate a large-scale multi-site ECG dataset with 1.53 million recordings from over 300 clinical centers. Experiments on three downstream tasks across six ECG datasets demonstrate that our method effectively reduces SB and achieves state-of-the-art performance.
Related papers
- GEM: Empowering MLLM for Grounded ECG Understanding with Time Series and Images [43.65650710265957]
We introduce GEM, the first MLLM unifying ECG time series, 12-lead ECG images and text for grounded and clinician-aligned ECG interpretation.<n> GEM enables feature-grounded analysis, evidence-driven reasoning, and a clinician-like diagnostic process through three core innovations.<n>We propose the Grounded ECG task, a clinically motivated benchmark designed to assess the MLLM's capability in grounded ECG understanding.
arXiv Detail & Related papers (2025-03-08T05:48:53Z) - CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention [53.539020807256904]
We introduce a Compact for Representations of Brain Oscillations using alternating attention (CEReBrO)<n>Our tokenization scheme represents EEG signals at a per-channel patch.<n>We propose an alternating attention mechanism that jointly models intra-channel temporal dynamics and inter-channel spatial correlations, achieving 2x speed improvement with 6x less memory required compared to standard self-attention.
arXiv Detail & Related papers (2025-01-18T21:44:38Z) - NERULA: A Dual-Pathway Self-Supervised Learning Framework for Electrocardiogram Signal Analysis [5.8961928852930034]
We present NERULA, a self-supervised framework designed for single-lead ECG signals.
NERULA's dual-pathway architecture combines ECG reconstruction and non-contrastive learning to extract detailed cardiac features.
We show that combining generative and discriminative paths into the training spectrum leads to better results by outperforming state-of-the-art self-supervised learning benchmarks in various tasks.
arXiv Detail & Related papers (2024-05-21T14:01:57Z) - Guiding Masked Representation Learning to Capture Spatio-Temporal Relationship of Electrocardiogram [2.2842904085777045]
We introduce ST-MEM (S-Temporal Masked Electrocardiogram Modeling), designed to learntemporal features by reconstructing 12-lead ECG data.
ST-MEM outperforms other SSL baseline methods in various experimental settings for arrhythmia.
arXiv Detail & Related papers (2024-02-02T10:04:13Z) - ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method
for ECG signal [19.885905393439014]
We propose a novel ECG-Segment based Learning (ECG-SL) framework to explicitly model the periodic nature of ECG signals.
Based on the structural features, a temporal model is designed to learn the temporal information for various clinical tasks.
The proposed method outperforms the baseline model and shows competitive performances compared with task-specific methods in three clinical applications.
arXiv Detail & Related papers (2023-10-01T23:17:55Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Automatic Detection of Noisy Electrocardiogram Signals without Explicit
Noise Labels [12.176026483486252]
We present a two-stage deep learning-based framework to automatically detect noisy ECG samples.
We observe that the framework can detect slightly and highly noisy ECG samples effectively.
We also study the transfer of the model learned on one dataset to another dataset and observe that the framework effectively detects noisy ECG samples.
arXiv Detail & Related papers (2022-08-08T17:16:16Z) - Learning ECG Representations based on Manipulated Temporal-Spatial
Reverse Detection [11.615287369669971]
We propose a straightforward but effective approach to learn ECG representations.
Inspired by the temporal and spatial characteristics of ECG, we flip the original signals horizontally, vertically, and both horizontally and vertically.
Results show that the ECG representations learned with our method lead to remarkable performances on the downstream task.
arXiv Detail & Related papers (2022-02-25T02:01:09Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Noise-Resilient Automatic Interpretation of Holter ECG Recordings [67.59562181136491]
We present a three-stage process for analysing Holter recordings with robustness to noisy signal.
First stage is a segmentation neural network (NN) with gradientdecoder architecture which detects positions of heartbeats.
Second stage is a classification NN which will classify heartbeats as wide or narrow.
Third stage is a boosting decision trees (GBDT) on top of NN features that incorporates patient-wise features.
arXiv Detail & Related papers (2020-11-17T16:15:49Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.