NERULA: A Dual-Pathway Self-Supervised Learning Framework for Electrocardiogram Signal Analysis
- URL: http://arxiv.org/abs/2405.19348v1
- Date: Tue, 21 May 2024 14:01:57 GMT
- Title: NERULA: A Dual-Pathway Self-Supervised Learning Framework for Electrocardiogram Signal Analysis
- Authors: Gouthamaan Manimaran, Sadasivan Puthusserypady, Helena DomÃnguez, Adrian Atienza, Jakob E. Bardram,
- Abstract summary: We present NERULA, a self-supervised framework designed for single-lead ECG signals.
NERULA's dual-pathway architecture combines ECG reconstruction and non-contrastive learning to extract detailed cardiac features.
We show that combining generative and discriminative paths into the training spectrum leads to better results by outperforming state-of-the-art self-supervised learning benchmarks in various tasks.
- Score: 5.8961928852930034
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electrocardiogram (ECG) signals are critical for diagnosing heart conditions and capturing detailed cardiac patterns. As wearable single-lead ECG devices become more common, efficient analysis methods are essential. We present NERULA (Non-contrastive ECG and Reconstruction Unsupervised Learning Algorithm), a self-supervised framework designed for single-lead ECG signals. NERULA's dual-pathway architecture combines ECG reconstruction and non-contrastive learning to extract detailed cardiac features. Our 50% masking strategy, using both masked and inverse-masked signals, enhances model robustness against real-world incomplete or corrupted data. The non-contrastive pathway aligns representations of masked and inverse-masked signals, while the reconstruction pathway comprehends and reconstructs missing features. We show that combining generative and discriminative paths into the training spectrum leads to better results by outperforming state-of-the-art self-supervised learning benchmarks in various tasks, demonstrating superior performance in ECG analysis, including arrhythmia classification, gender classification, age regression, and human activity recognition. NERULA's dual-pathway design offers a robust, efficient solution for comprehensive ECG signal interpretation.
Related papers
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - ECGrecover: a Deep Learning Approach for Electrocardiogram Signal Completion [1.727597257312416]
We address the challenge of reconstructing the complete 12-lead ECG signal from incomplete parts of it.
We propose a model with a U-Net architecture trained on a novel objective function to address the reconstruction problem.
arXiv Detail & Related papers (2024-05-31T15:17:12Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method
for ECG signal [19.885905393439014]
We propose a novel ECG-Segment based Learning (ECG-SL) framework to explicitly model the periodic nature of ECG signals.
Based on the structural features, a temporal model is designed to learn the temporal information for various clinical tasks.
The proposed method outperforms the baseline model and shows competitive performances compared with task-specific methods in three clinical applications.
arXiv Detail & Related papers (2023-10-01T23:17:55Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - SEVGGNet-LSTM: a fused deep learning model for ECG classification [38.747030782394646]
The input ECG signals are firstly segmented and normalized, and then fed into the combined VGG and LSTM network for feature extraction and classification.
An attention mechanism (SE block) is embedded into the core network for increasing the weight of important features.
arXiv Detail & Related papers (2022-10-31T07:36:48Z) - Learning ECG Representations based on Manipulated Temporal-Spatial
Reverse Detection [11.615287369669971]
We propose a straightforward but effective approach to learn ECG representations.
Inspired by the temporal and spatial characteristics of ECG, we flip the original signals horizontally, vertically, and both horizontally and vertically.
Results show that the ECG representations learned with our method lead to remarkable performances on the downstream task.
arXiv Detail & Related papers (2022-02-25T02:01:09Z) - ECG-Adv-GAN: Detecting ECG Adversarial Examples with Conditional
Generative Adversarial Networks [4.250203361580781]
Deep neural networks have become a popular technique for tracing ECG signals, outperforming human experts.
GAN architecture has been employed in recent works to synthesize adversarial ECG signals to increase existing training data.
We propose a novel Conditional Generative Adrial Network to simultaneously generate ECG signals for different categories and detect cardiac abnormalities.
arXiv Detail & Related papers (2021-07-16T02:53:14Z) - Classification of Arrhythmia by Using Deep Learning with 2-D ECG
Spectral Image Representation [3.3426603061273994]
We propose a two-dimensional (2-D) convolutional neural network (CNN) model for the classification of ECG signals into eight classes.
We achieved a state-of-the-art average classification accuracy of 99.11%, which is better than those of recently reported results in classifying similar types of arrhythmias.
arXiv Detail & Related papers (2020-05-14T12:11:41Z) - Heart Sound Segmentation using Bidirectional LSTMs with Attention [37.62160903348547]
We propose a novel framework for the segmentation of phonocardiogram (PCG) signals into heart states.
We exploit recent advancements in attention based learning to segment the PCG signal.
The proposed method attains state-of-the-art performance on multiple benchmarks including both human and animal heart recordings.
arXiv Detail & Related papers (2020-04-02T02:09:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.