How Can Multimodal Remote Sensing Datasets Transform Classification via SpatialNet-ViT?
- URL: http://arxiv.org/abs/2506.22501v1
- Date: Wed, 25 Jun 2025 10:50:33 GMT
- Title: How Can Multimodal Remote Sensing Datasets Transform Classification via SpatialNet-ViT?
- Authors: Gautam Siddharth Kashyap, Manaswi Kulahara, Nipun Joshi, Usman Naseem,
- Abstract summary: We propose a novel model, SpatialNet-ViT, leveraging the power of Vision Transformers (ViTs) and Multi-Task Learning (MTL)<n>This integrated approach combines spatial awareness with contextual understanding, improving both classification accuracy and scalability.
- Score: 4.148953499574201
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Remote sensing datasets offer significant promise for tackling key classification tasks such as land-use categorization, object presence detection, and rural/urban classification. However, many existing studies tend to focus on narrow tasks or datasets, which limits their ability to generalize across various remote sensing classification challenges. To overcome this, we propose a novel model, SpatialNet-ViT, leveraging the power of Vision Transformers (ViTs) and Multi-Task Learning (MTL). This integrated approach combines spatial awareness with contextual understanding, improving both classification accuracy and scalability. Additionally, techniques like data augmentation, transfer learning, and multi-task learning are employed to enhance model robustness and its ability to generalize across diverse datasets
Related papers
- Temporal-Spectral-Spatial Unified Remote Sensing Dense Prediction [62.376936772702905]
Current deep learning architectures for remote sensing are fundamentally rigid.<n>We introduce the Spatial-Temporal-Spectral Unified Network (STSUN) for unified modeling.<n> STSUN can adapt to input and output data with arbitrary spatial sizes, temporal lengths, and spectral bands.<n>It unifies disparate dense prediction tasks within a single architecture by conditioning the model on trainable task embeddings.
arXiv Detail & Related papers (2025-05-18T07:39:17Z) - A Survey on Remote Sensing Foundation Models: From Vision to Multimodality [35.532200523631765]
Vision and multimodal foundation models for remote sensing have significantly improved the capabilities of intelligent geospatial data interpretation.<n>The diversity in data types, the need for large-scale annotated datasets, and the complexity of multimodal fusion techniques pose significant obstacles to the effective deployment of these models.<n>This paper provides a review of the state-of-the-art in vision and multimodal foundation models for remote sensing, focusing on their architecture, training methods, datasets and application scenarios.
arXiv Detail & Related papers (2025-03-28T01:57:35Z) - SM3Det: A Unified Model for Multi-Modal Remote Sensing Object Detection [73.49799596304418]
This paper introduces a new task called Multi-Modal datasets and Multi-Task Object Detection (M2Det) for remote sensing.<n>It is designed to accurately detect horizontal or oriented objects from any sensor modality.<n>This task poses challenges due to 1) the trade-offs involved in managing multi-modal modelling and 2) the complexities of multi-task optimization.
arXiv Detail & Related papers (2024-12-30T02:47:51Z) - Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Web-scale visual entity recognition presents significant challenges due to the lack of clean, large-scale training data.
We propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation.
Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks.
arXiv Detail & Related papers (2024-10-31T06:55:24Z) - A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset [44.94304541427113]
We propose a multitask deep learning model to perform multiple classification and regression tasks simultaneously on hyperspectral images.
We validated our approach on a large hyperspectral dataset called TAIGA.
A comprehensive qualitative and quantitative analysis of the results shows that the proposed method significantly outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-23T11:14:54Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
Recent advances in unsupervised learning have demonstrated the ability of large vision models to achieve promising results on downstream tasks.
Such pre-training techniques have also been explored recently in the remote sensing domain due to the availability of large amount of unlabelled data.
In this paper, we re-visit transformers pre-training and leverage multi-scale information that is effectively utilized with multiple modalities.
arXiv Detail & Related papers (2024-03-08T16:18:04Z) - An Efficient General-Purpose Modular Vision Model via Multi-Task
Heterogeneous Training [79.78201886156513]
We present a model that can perform multiple vision tasks and can be adapted to other downstream tasks efficiently.
Our approach achieves comparable results to single-task state-of-the-art models and demonstrates strong generalization on downstream tasks.
arXiv Detail & Related papers (2023-06-29T17:59:57Z) - Learning Transferable Adversarial Robust Representations via Multi-view
Consistency [57.73073964318167]
We propose a novel meta-adversarial multi-view representation learning framework with dual encoders.
We demonstrate the effectiveness of our framework on few-shot learning tasks from unseen domains.
arXiv Detail & Related papers (2022-10-19T11:48:01Z) - Learning Prototype-oriented Set Representations for Meta-Learning [85.19407183975802]
Learning from set-structured data is a fundamental problem that has recently attracted increasing attention.
This paper provides a novel optimal transport based way to improve existing summary networks.
We further instantiate it to the cases of few-shot classification and implicit meta generative modeling.
arXiv Detail & Related papers (2021-10-18T09:49:05Z) - Sense and Learn: Self-Supervision for Omnipresent Sensors [9.442811508809994]
We present a framework named Sense and Learn for representation or feature learning from raw sensory data.
It consists of several auxiliary tasks that can learn high-level and broadly useful features entirely from unannotated data without any human involvement in the tedious labeling process.
Our methodology achieves results that are competitive with the supervised approaches and close the gap through fine-tuning a network while learning the downstream tasks in most cases.
arXiv Detail & Related papers (2020-09-28T11:57:43Z) - X-ModalNet: A Semi-Supervised Deep Cross-Modal Network for
Classification of Remote Sensing Data [69.37597254841052]
We propose a novel cross-modal deep-learning framework called X-ModalNet.
X-ModalNet generalizes well, owing to propagating labels on an updatable graph constructed by high-level features on the top of the network.
We evaluate X-ModalNet on two multi-modal remote sensing datasets (HSI-MSI and HSI-SAR) and achieve a significant improvement in comparison with several state-of-the-art methods.
arXiv Detail & Related papers (2020-06-24T15:29:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.