Exploring Artificial Intelligence Tutor Teammate Adaptability to Harness Discovery Curiosity and Promote Learning in the Context of Interactive Molecular Dynamics
- URL: http://arxiv.org/abs/2506.22520v1
- Date: Thu, 26 Jun 2025 19:30:25 GMT
- Title: Exploring Artificial Intelligence Tutor Teammate Adaptability to Harness Discovery Curiosity and Promote Learning in the Context of Interactive Molecular Dynamics
- Authors: Mustafa Demir, Jacob Miratsky, Jonathan Nguyen, Chun Kit Chan, Punya Mishra, Abhishek Singharoy,
- Abstract summary: This study examines the impact of an Artificial Intelligence tutor teammate (AI) on student curiosity-driven engagement and learning effectiveness during Interactive Molecular Dynamics (IMD) tasks on the Visual Molecular Dynamics platform.<n>The study further assesses how AI interventions shape student engagement, foster discovery curiosity, and enhance team performance within the IMD learning environment.
- Score: 1.0484829165073797
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study examines the impact of an Artificial Intelligence tutor teammate (AI) on student curiosity-driven engagement and learning effectiveness during Interactive Molecular Dynamics (IMD) tasks on the Visual Molecular Dynamics platform. It explores the role of the AI's curiosity-triggering and response behaviors in stimulating and sustaining student curiosity, affecting the frequency and complexity of student-initiated questions. The study further assesses how AI interventions shape student engagement, foster discovery curiosity, and enhance team performance within the IMD learning environment. Using a Wizard-of-Oz paradigm, a human experimenter dynamically adjusts the AI tutor teammate's behavior through a large language model. By employing a mixed-methods exploratory design, a total of 11 high school students participated in four IMD tasks that involved molecular visualization and calculations, which increased in complexity over a 60-minute period. Team performance was evaluated through real-time observation and recordings, whereas team communication was measured by question complexity and AI's curiosity-triggering and response behaviors. Cross Recurrence Quantification Analysis (CRQA) metrics reflected structural alignment in coordination and were linked to communication behaviors. High-performing teams exhibited superior task completion, deeper understanding, and increased engagement. Advanced questions were associated with AI curiosity-triggering, indicating heightened engagement and cognitive complexity. CRQA metrics highlighted dynamic synchronization in student-AI interactions, emphasizing structured yet adaptive engagement to promote curiosity. These proof-of-concept findings suggest that the AI's dual role as a teammate and educator indicates its capacity to provide adaptive feedback, sustaining engagement and epistemic curiosity.
Related papers
- Classifying Epistemic Relationships in Human-AI Interaction: An Exploratory Approach [0.6906005491572401]
This study examines how users form relationships with AI-how they assess, trust, and collaborate with it in research and teaching contexts.<n>Based on 31 interviews with academics across disciplines, we developed a five-part codebook and identified five relationship types.
arXiv Detail & Related papers (2025-08-02T23:41:28Z) - Short-Term Gains, Long-Term Gaps: The Impact of GenAI and Search Technologies on Retention [1.534667887016089]
This study investigates how GenAI (ChatGPT), search engines (Google), and e-textbooks influence student performance across tasks of varying cognitive complexity.<n>ChatGPT and Google groups outperformed the control group in immediate assessments for lower-order cognitive tasks.<n>While AI-driven tools facilitate immediate performance, they do not inherently reinforce long-term retention unless supported by structured learning strategies.
arXiv Detail & Related papers (2025-07-10T00:44:50Z) - ChatGPT produces more "lazy" thinkers: Evidence of cognitive engagement decline [0.0]
This study investigates the impact of generative artificial intelligence (AI) tools on the cognitive engagement of students during academic writing tasks.<n>The results revealed significantly lower cognitive engagement scores in the ChatGPT group compared to the control group.<n>These findings suggest that AI assistance may lead to cognitive offloading.
arXiv Detail & Related papers (2025-06-30T18:41:50Z) - (AI peers) are people learning from the same standpoint: Perception of AI characters in a Collaborative Science Investigation [0.0]
scenario-based assessment (SBA) introduces simulated agents to provide an authentic social-interactional context.<n>Recent advancements in multimodal AI, such as text-to-video technology, allow these agents to be enhanced into AI-generated characters.<n>This study investigates how learners perceive AI characters taking the role of mentor and teammates in an SBA mirroring the context of a collaborative science investigation.
arXiv Detail & Related papers (2025-06-06T15:29:11Z) - AI instructional agent improves student's perceived learner control and learning outcome: empirical evidence from a randomized controlled trial [29.45751702212421]
This study examines the impact of an AI instructional agent on students' perceived learner control and academic performance in a medium demanding course with lecturing as the main teaching strategy.<n>Students in the AI instructional agent group reported significantly higher levels of perceived learner control compared to the other groups.
arXiv Detail & Related papers (2025-05-28T16:13:27Z) - Improving Question Embeddings with Cognitiv Representation Optimization for Knowledge Tracing [77.14348157016518]
The Knowledge Tracing (KT) aims to track changes in students' knowledge status and predict their future answers based on their historical answer records.<n>Current research on KT modeling focuses on predicting student' future performance based on existing, unupdated records of student learning interactions.<n>We propose a Cognitive Representation Optimization for Knowledge Tracing model, which utilizes a dynamic programming algorithm to optimize structure of cognitive representations.
arXiv Detail & Related papers (2025-04-05T09:32:03Z) - Detecting Neurocognitive Disorders through Analyses of Topic Evolution and Cross-modal Consistency in Visual-Stimulated Narratives [84.03001845263]
Early detection of neurocognitive disorders (NCDs) is crucial for timely intervention and disease management.<n>We propose two novel dynamic macrostructural approaches to measure cross-modal consistency between speech and visual stimuli.<n> Experimental results validated the efficiency of proposed approaches in NCD detection, with TITAN achieving superior performance both on the CU-MARVEL-RABBIT corpus and the ADReSS corpus.
arXiv Detail & Related papers (2025-01-07T12:16:26Z) - Visual-Geometric Collaborative Guidance for Affordance Learning [63.038406948791454]
We propose a visual-geometric collaborative guided affordance learning network that incorporates visual and geometric cues.
Our method outperforms the representative models regarding objective metrics and visual quality.
arXiv Detail & Related papers (2024-10-15T07:35:51Z) - Beyond Following: Mixing Active Initiative into Computational Creativity [7.366868731714772]
This study investigates the influence of an active and learning AI agent on creators' expectancy of creative responsibilities.
We develop a Multi-armed-bandit agent that learns from the human creator, updates its collaborative decision-making belief, and switches between its capabilities.
arXiv Detail & Related papers (2024-09-06T18:56:08Z) - OlympicArena: Benchmarking Multi-discipline Cognitive Reasoning for Superintelligent AI [73.75520820608232]
We introduce OlympicArena, which includes 11,163 bilingual problems across both text-only and interleaved text-image modalities.<n>These challenges encompass a wide range of disciplines spanning seven fields and 62 international Olympic competitions, rigorously examined for data leakage.<n>Our evaluations reveal that even advanced models like GPT-4o only achieve a 39.97% overall accuracy, illustrating current AI limitations in complex reasoning and multimodal integration.
arXiv Detail & Related papers (2024-06-18T16:20:53Z) - Re-mine, Learn and Reason: Exploring the Cross-modal Semantic
Correlations for Language-guided HOI detection [57.13665112065285]
Human-Object Interaction (HOI) detection is a challenging computer vision task.
We present a framework that enhances HOI detection by incorporating structured text knowledge.
arXiv Detail & Related papers (2023-07-25T14:20:52Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - ELBA: Learning by Asking for Embodied Visual Navigation and Task Completion [11.068806371839424]
We propose an Embodied Learning-By-Asking (ELBA) model that learns when and what questions to ask to dynamically acquire additional information for completing the task.<n> Experimental results show that the proposed method achieves improved task performance compared to baseline models without question-answering capabilities.
arXiv Detail & Related papers (2023-02-09T18:59:41Z) - A Novel Multimodal Approach for Studying the Dynamics of Curiosity in
Small Group Learning [2.55061802822074]
We propose an integrated socio-cognitive account of curiosity that ties observable behaviors in peers to underlying curiosity states.
We make a bipartite distinction between individual and interpersonal functions that contribute to curiosity, and multimodal behaviors that fulfill these functions.
This work is a step towards designing learning technologies that can recognize and evoke moment-by-moment curiosity during learning in social contexts.
arXiv Detail & Related papers (2022-04-01T16:12:40Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
Psychological curiosity plays a significant role in human intelligence to enhance learning through exploration and information acquisition.
In the Artificial Intelligence (AI) community, artificial curiosity provides a natural intrinsic motivation for efficient learning.
CDL has become increasingly popular, where agents are self-motivated to learn novel knowledge.
arXiv Detail & Related papers (2022-01-20T17:07:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.