Neural models of multiscale systems: conceptual limitations, stochastic parametrizations, and a climate application
- URL: http://arxiv.org/abs/2506.22552v2
- Date: Sat, 05 Jul 2025 03:31:40 GMT
- Title: Neural models of multiscale systems: conceptual limitations, stochastic parametrizations, and a climate application
- Authors: Fabrizio Falasca,
- Abstract summary: A climate model should capture both stationary statistics and responses to external perturbations.<n>Current autoregressive neural models often reproduce the former, but they typically struggle with the latter.<n>We argue that physically grounded strategies are critical, both conceptually and practically, for the skillful emulation of complex systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work explores key conceptual limitations in data-driven modeling of multiscale dynamical systems, focusing on neural emulators and stochastic climate modeling. A skillful climate model should capture both stationary statistics and responses to external perturbations. While current autoregressive neural models often reproduce the former, they typically struggle with the latter. We begin by analyzing a low-dimensional dynamical system to expose, by analogy, fundamental limitations that persist in high-dimensional settings. Specifically, we construct neural stochastic models under two scenarios: one where the full state vector is observed, and another with only partial observations (i.e. a subset of variables). In the first case, the models accurately capture both equilibrium statistics and forced responses in ensemble mean and variance. In the more realistic case of partial observations, two key challenges emerge: (i) identifying the \textit{proper} variables to model, and (ii) parameterizing the influence of unobserved degrees of freedom. These issues are not specific to neural networks but reflect fundamental limitations of data-driven modeling and the need to target the slow dynamics of the system. We argue that physically grounded strategies -- such as coarse-graining and stochastic parameterizations -- are critical, both conceptually and practically, for the skillful emulation of complex systems like the coupled climate system. Building on these insights, we turn to a more realistic application: a stochastic reduced neural model of the sea surface temperature field and the net radiative flux at the top of the atmosphere, assessing its stationary statistics, response to temperature forcing, and interpretability.
Related papers
- Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
We introduce LangevinFlow, a sequential Variational Auto-Encoder where the time evolution of latent variables is governed by the underdamped Langevin equation.<n>Our approach incorporates physical priors -- such as inertia, damping, a learned potential function, and forces -- to represent both autonomous and non-autonomous processes in neural systems.<n>Our method outperforms state-of-the-art baselines on synthetic neural populations generated by a Lorenz attractor.
arXiv Detail & Related papers (2025-07-15T17:57:48Z) - Neural operators struggle to learn complex PDEs in pedestrian mobility: Hughes model case study [4.853898836835068]
Hughes model is a first-order hyperbolic conservation law system for crowd dynamics.<n>Neural operators perform well in easy scenarios with fewer discontinuities in the initial condition.<n>They struggle in complex scenarios with multiple initial discontinuities and dynamic boundary conditions.
arXiv Detail & Related papers (2025-04-25T11:26:41Z) - Allostatic Control of Persistent States in Spiking Neural Networks for perception and computation [79.16635054977068]
We introduce a novel model for updating perceptual beliefs about the environment by extending the concept of Allostasis to the control of internal representations.<n>In this paper, we focus on an application in numerical cognition, where a bump of activity in an attractor network is used as a spatial numerical representation.
arXiv Detail & Related papers (2025-03-20T12:28:08Z) - Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems [49.11170948406405]
We propose an unsupervised method to estimate the physical parameters of known, continuous governing equations from single videos.<n>We take the field closer to reality by recording Delfys75: our own real-world dataset of 75 videos for five different types of dynamical systems.
arXiv Detail & Related papers (2024-10-02T09:44:54Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces novel deep dynamical models designed to represent continuous-time sequences.<n>We train the model using maximum likelihood estimation with Markov chain Monte Carlo.<n> Experimental results on oscillating systems, videos and real-world state sequences (MuJoCo) demonstrate that our model with the learnable energy-based prior outperforms existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Physics-informed Discovery of State Variables in Second-Order and Hamiltonian Systems [1.7406327893433848]
This research proposes a method that leverages the physical characteristics of second-order Hamiltonian systems to constrain the baseline model.
The proposed model outperforms the baseline model in identifying a minimal set of non-redundant and interpretable state variables.
arXiv Detail & Related papers (2024-08-21T15:10:50Z) - Towards Physically Consistent Deep Learning For Climate Model Parameterizations [46.07009109585047]
parameterizations are a major source of systematic errors and large uncertainties in climate projections.
Deep learning (DL)-based parameterizations, trained on data from computationally expensive short, high-resolution simulations, have shown great promise for improving climate models.
We propose an efficient supervised learning framework for DL-based parameterizations that leads to physically consistent models.
arXiv Detail & Related papers (2024-06-06T10:02:49Z) - Learning Spatiotemporal Dynamical Systems from Point Process Observations [7.381752536547389]
Current neural network-based model approaches fall short when faced with data that is collected randomly over time and space.<n>In response, we developed a new method that can effectively learn from such process observations.<n>Our model integrates techniques from neural differential equations, neural point processes, implicit neural representations and amortized variational inference.
arXiv Detail & Related papers (2024-06-01T09:03:32Z) - Neural Persistence Dynamics [8.197801260302642]
We consider the problem of learning the dynamics in the topology of time-evolving point clouds.
Our proposed model - $textitNeural Persistence Dynamics$ - substantially outperforms the state-of-the-art across a diverse set of parameter regression tasks.
arXiv Detail & Related papers (2024-05-24T17:20:18Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Neural Superstatistics for Bayesian Estimation of Dynamic Cognitive
Models [2.7391842773173334]
We develop a simulation-based deep learning method for Bayesian inference, which can recover both time-varying and time-invariant parameters.
Our results show that the deep learning approach is very efficient in capturing the temporal dynamics of the model.
arXiv Detail & Related papers (2022-11-23T17:42:53Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
Graph Neural Networks (GNNs) have become a prevailing tool for learning physical dynamics.
Physical laws abide by symmetry, which is a vital inductive bias accounting for model generalization.
Our model achieves on average over 3% enhancement in contact prediction accuracy across 8 scenarios on Physion and 2X lower rollout MSE on RigidFall.
arXiv Detail & Related papers (2022-10-13T10:00:30Z) - Neural Implicit Representations for Physical Parameter Inference from a Single Video [49.766574469284485]
We propose to combine neural implicit representations for appearance modeling with neural ordinary differential equations (ODEs) for modelling physical phenomena.
Our proposed model combines several unique advantages: (i) Contrary to existing approaches that require large training datasets, we are able to identify physical parameters from only a single video.
The use of neural implicit representations enables the processing of high-resolution videos and the synthesis of photo-realistic images.
arXiv Detail & Related papers (2022-04-29T11:55:35Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.