Interact2Vec -- An efficient neural network-based model for simultaneously learning users and items embeddings in recommender systems
- URL: http://arxiv.org/abs/2506.22648v3
- Date: Thu, 24 Jul 2025 17:44:54 GMT
- Title: Interact2Vec -- An efficient neural network-based model for simultaneously learning users and items embeddings in recommender systems
- Authors: Pedro R. Pires, Tiago A. Almeida,
- Abstract summary: This paper presents a novel neural network-based model that simultaneously learns distributed embeddings for users and items.<n>The model employs state-of-the-art strategies that natural language processing models commonly use to optimize the training phase and enhance the final embeddings.
- Score: 1.0819408603463425
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Over the past decade, recommender systems have experienced a surge in popularity. Despite notable progress, they grapple with challenging issues, such as high data dimensionality and sparseness. Representing users and items as low-dimensional embeddings learned via neural networks has become a leading solution. However, while recent studies show promising results, many approaches rely on complex architectures or require content data, which may not always be available. This paper presents Interact2Vec, a novel neural network-based model that simultaneously learns distributed embeddings for users and items while demanding only implicit feedback. The model employs state-of-the-art strategies that natural language processing models commonly use to optimize the training phase and enhance the final embeddings. Two types of experiments were conducted regarding the extrinsic and intrinsic quality of the model. In the former, we benchmarked the recommendations generated by Interact2Vec's embeddings in a top-$N$ ranking problem, comparing them with six other recommender algorithms. The model achieved the second or third-best results in 30% of the datasets, being competitive with other recommenders, and has proven to be very efficient with an average training time reduction of 274% compared to other embedding-based models. Later, we analyzed the intrinsic quality of the embeddings through similarity tables. Our findings suggest that Interact2Vec can achieve promising results, especially on the extrinsic task, and is an excellent embedding-generator model for scenarios of scarce computing resources, enabling the learning of item and user embeddings simultaneously and efficiently.
Related papers
- A Two-Phase Recall-and-Select Framework for Fast Model Selection [13.385915962994806]
We propose a two-phase (coarse-recall and fine-selection) model selection framework.
It aims to enhance the efficiency of selecting a robust model by leveraging the models' training performances on benchmark datasets.
It has been demonstrated that the proposed methodology facilitates the selection of a high-performing model at a rate about 3x times faster than conventional baseline methods.
arXiv Detail & Related papers (2024-03-28T14:44:44Z) - Optimizing Dense Feed-Forward Neural Networks [0.0]
We propose a novel feed-forward neural network constructing method based on pruning and transfer learning.
Our approach can compress the number of parameters by more than 70%.
We also evaluate the transfer learning level comparing the refined model and the original one training from scratch a neural network.
arXiv Detail & Related papers (2023-12-16T23:23:16Z) - Generative Forests [23.554594285885273]
We focus on generative AI for a type of data that still represent one of the most prevalent form of data: tabular data.
Our paper introduces a new powerful class of forest-based models fit for such tasks and a simple training algorithm with strong convergence guarantees.
Additional experiments on these tasks reveal that our models can be notably good contenders to diverse state of the art methods.
arXiv Detail & Related papers (2023-08-07T14:58:53Z) - Layer-wise Linear Mode Connectivity [52.6945036534469]
Averaging neural network parameters is an intuitive method for the knowledge of two independent models.
It is most prominently used in federated learning.
We analyse the performance of the models that result from averaging single, or groups.
arXiv Detail & Related papers (2023-07-13T09:39:10Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Part-Based Models Improve Adversarial Robustness [57.699029966800644]
We show that combining human prior knowledge with end-to-end learning can improve the robustness of deep neural networks.
Our model combines a part segmentation model with a tiny classifier and is trained end-to-end to simultaneously segment objects into parts.
Our experiments indicate that these models also reduce texture bias and yield better robustness against common corruptions and spurious correlations.
arXiv Detail & Related papers (2022-09-15T15:41:47Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Learning Deep Representation with Energy-Based Self-Expressiveness for
Subspace Clustering [24.311754971064303]
We propose a new deep subspace clustering framework, motivated by the energy-based models.
Considering the powerful representation ability of the recently popular self-supervised learning, we attempt to leverage self-supervised representation learning to learn the dictionary.
arXiv Detail & Related papers (2021-10-28T11:51:08Z) - A Survey on Neural Recommendation: From Collaborative Filtering to
Content and Context Enriched Recommendation [70.69134448863483]
Research in recommendation has shifted to inventing new recommender models based on neural networks.
In recent years, we have witnessed significant progress in developing neural recommender models.
arXiv Detail & Related papers (2021-04-27T08:03:52Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Machine learning with incomplete datasets using multi-objective
optimization models [1.933681537640272]
We propose an online approach to handle missing values while a classification model is learnt.
We develop a multi-objective optimization model with two objective functions for imputation and model selection.
We use an evolutionary algorithm based on NSGA II to find the optimal solutions.
arXiv Detail & Related papers (2020-12-04T03:44:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.