Bayesian Invariance Modeling of Multi-Environment Data
- URL: http://arxiv.org/abs/2506.22675v3
- Date: Wed, 09 Jul 2025 15:42:31 GMT
- Title: Bayesian Invariance Modeling of Multi-Environment Data
- Authors: Luhuan Wu, Mingzhang Yin, Yixin Wang, John P. Cunningham, David M. Blei,
- Abstract summary: We develop a probabilistic model for invariant prediction.<n>In simulations and real data, we find that BIP and VI-BIP are more accurate and scalable than existing methods for invariant prediction.
- Score: 48.7892531847207
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Invariant prediction [Peters et al., 2016] analyzes feature/outcome data from multiple environments to identify invariant features - those with a stable predictive relationship to the outcome. Such features support generalization to new environments and help reveal causal mechanisms. Previous methods have primarily tackled this problem through hypothesis testing or regularized optimization. Here we develop Bayesian Invariant Prediction (BIP), a probabilistic model for invariant prediction. BIP encodes the indices of invariant features as a latent variable and recover them by posterior inference. Under the assumptions of Peters et al. [2016], the BIP posterior targets the true invariant features. We prove that the posterior is consistent and that greater environment heterogeneity leads to faster posterior contraction. To handle many features, we design an efficient variational approximation called VI-BIP. In simulations and real data, we find that BIP and VI-BIP are more accurate and scalable than existing methods for invariant prediction.
Related papers
- Bayesian Hierarchical Invariant Prediction [4.182645056052712]
We propose Bayesian Hierarchical Invariant Prediction (BHIP) reframing Invariant Causal Prediction (ICP) through the lens of Hierarchical Bayes.<n>We leverage the hierarchical structure to explicitly test invariance of causal mechanisms under heterogeneous data, resulting in improved computational scalability for a larger number of predictors compared to ICP.<n>In this paper, we test two sparsity inducing priors: horseshoe and spike-and-slab, both of which allow us a more reliable identification of causal features.
arXiv Detail & Related papers (2025-05-16T13:06:25Z) - Predictive variational inference: Learn the predictively optimal posterior distribution [1.7648680700685022]
Vanilla variational inference finds an optimal approximation to the Bayesian posterior distribution, but even the exact Bayesian posterior is often not meaningful under model misspecification.<n>We propose predictive variational inference (PVI): a general inference framework that seeks and samples from an optimal posterior density.
arXiv Detail & Related papers (2024-10-18T19:44:57Z) - Winning Prize Comes from Losing Tickets: Improve Invariant Learning by
Exploring Variant Parameters for Out-of-Distribution Generalization [76.27711056914168]
Out-of-Distribution (OOD) Generalization aims to learn robust models that generalize well to various environments without fitting to distribution-specific features.
Recent studies based on Lottery Ticket Hypothesis (LTH) address this problem by minimizing the learning target to find some of the parameters that are critical to the task.
We propose Exploring Variant parameters for Invariant Learning (EVIL) which also leverages the distribution knowledge to find the parameters that are sensitive to distribution shift.
arXiv Detail & Related papers (2023-10-25T06:10:57Z) - Posterior Collapse and Latent Variable Non-identifiability [54.842098835445]
We propose a class of latent-identifiable variational autoencoders, deep generative models which enforce identifiability without sacrificing flexibility.
Across synthetic and real datasets, latent-identifiable variational autoencoders outperform existing methods in mitigating posterior collapse and providing meaningful representations of the data.
arXiv Detail & Related papers (2023-01-02T06:16:56Z) - Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
We propose an optimization algorithm for Variational Inference (VI) in complex models.
We develop an efficient algorithm for Gaussian Variational Inference whose updates satisfy the positive definite constraint on the variational covariance matrix.
Due to its black-box nature, MGVBP stands as a ready-to-use solution for VI in complex models.
arXiv Detail & Related papers (2022-10-26T10:12:31Z) - Invariant Ancestry Search [6.583725235299022]
We introduce the concept of minimal invariance and propose invariant ancestry search (IAS)
In its population version, IAS outputs a set which contains only ancestors of the response and is the output of ICP.
We develop scalable algorithms and perform experiments on simulated and real data.
arXiv Detail & Related papers (2022-02-02T08:28:00Z) - Variance Minimization in the Wasserstein Space for Invariant Causal
Prediction [72.13445677280792]
In this work, we show that the approach taken in ICP may be reformulated as a series of nonparametric tests that scales linearly in the number of predictors.
Each of these tests relies on the minimization of a novel loss function that is derived from tools in optimal transport theory.
We prove under mild assumptions that our method is able to recover the set of identifiable direct causes, and we demonstrate in our experiments that it is competitive with other benchmark causal discovery algorithms.
arXiv Detail & Related papers (2021-10-13T22:30:47Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
We propose a Natural Gradient Boosting (NGBoost) approach based on nonparametrically modeling the conditional parameters of the multivariate predictive distribution.
Our method is robust, works out-of-the-box without extensive tuning, is modular with respect to the assumed target distribution, and performs competitively in comparison to existing approaches.
arXiv Detail & Related papers (2021-06-07T17:44:49Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
Probabilistic Gradient Boosting Machines (PGBM) is a method to create probabilistic predictions with a single ensemble of decision trees.
We empirically demonstrate the advantages of PGBM compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-03T08:32:13Z) - Reducing the Amortization Gap in Variational Autoencoders: A Bayesian
Random Function Approach [38.45568741734893]
Inference in our GP model is done by a single feed forward pass through the network, significantly faster than semi-amortized methods.
We show that our approach attains higher test data likelihood than the state-of-the-arts on several benchmark datasets.
arXiv Detail & Related papers (2021-02-05T13:01:12Z) - Variational Variance: Simple, Reliable, Calibrated Heteroscedastic Noise
Variance Parameterization [3.553493344868413]
We propose critiques to test predictive mean and variance calibration and the predictive distribution's ability to generate sensible data.
We find that our solution, to treat heteroscedastic variance variationally, sufficiently regularizes variance to pass these PPCs.
arXiv Detail & Related papers (2020-06-08T19:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.