Text Production and Comprehension by Human and Artificial Intelligence: Interdisciplinary Workshop Report
- URL: http://arxiv.org/abs/2506.22698v2
- Date: Tue, 01 Jul 2025 15:26:29 GMT
- Title: Text Production and Comprehension by Human and Artificial Intelligence: Interdisciplinary Workshop Report
- Authors: Emily Dux Speltz,
- Abstract summary: This report synthesizes the outcomes of a recent interdisciplinary workshop that brought together experts in cognitive psychology, language learning, and artificial intelligence (AI)-based natural language processing (NLP)<n>The workshop aimed to address a critical knowledge gap in our understanding of the relationship between AI language models and human cognitive processes in text comprehension and composition.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This report synthesizes the outcomes of a recent interdisciplinary workshop that brought together leading experts in cognitive psychology, language learning, and artificial intelligence (AI)-based natural language processing (NLP). The workshop, funded by the National Science Foundation, aimed to address a critical knowledge gap in our understanding of the relationship between AI language models and human cognitive processes in text comprehension and composition. Through collaborative dialogue across cognitive, linguistic, and technological perspectives, workshop participants examined the underlying processes involved when humans produce and comprehend text, and how AI can both inform our understanding of these processes and augment human capabilities. The workshop revealed emerging patterns in the relationship between large language models (LLMs) and human cognition, with highlights on both the capabilities of LLMs and their limitations in fully replicating human-like language understanding and generation. Key findings include the potential of LLMs to offer insights into human language processing, the increasing alignment between LLM behavior and human language processing when models are fine-tuned with human feedback, and the opportunities and challenges presented by human-AI collaboration in language tasks. By synthesizing these findings, this report aims to guide future research, development, and implementation of LLMs in cognitive psychology, linguistics, and education. It emphasizes the importance of ethical considerations and responsible use of AI technologies while striving to enhance human capabilities in text comprehension and production through effective human-AI collaboration.
Related papers
- What's So Human about Human-AI Collaboration, Anyway? Generative AI and Human-Computer Interaction [6.937302622894666]
We identify how, given the language capabilities of generative AI, common features of human-human collaboration can be applied to the study of human-computer interaction.<n>We provide insights drawn from interviews with industry personnel working on building human-AI collaboration systems, as well as our collaborations with end-users to build a multimodal AI assistant for task support.
arXiv Detail & Related papers (2025-03-07T20:48:18Z) - Toward Cultural Interpretability: A Linguistic Anthropological Framework for Describing and Evaluating Large Language Models (LLMs) [13.71024600466761]
This article proposes a new integration of linguistic anthropology and machine learning (ML)
We show the theoretical feasibility of a new, conjoint field of inquiry, cultural interpretability (CI)
CI emphasizes how the dynamic relationship between language and culture makes contextually sensitive, open-ended conversation possible.
arXiv Detail & Related papers (2024-11-07T22:01:50Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
We focus on predicting engagement in dyadic interactions by scrutinizing verbal and non-verbal cues, aiming to detect signs of disinterest or confusion.
In this work, we collect a dataset featuring 34 participants engaged in casual dyadic conversations, each providing self-reported engagement ratings at the end of each conversation.
We introduce a novel fusion strategy using Large Language Models (LLMs) to integrate multiple behavior modalities into a multimodal transcript''
arXiv Detail & Related papers (2024-09-13T18:28:12Z) - Psychomatics -- A Multidisciplinary Framework for Understanding Artificial Minds [0.319565400223685]
This paper introduces Psychomatics, a framework bridging cognitive science, linguistics, and computer science.
It aims to better understand the high-level functioning of LLMs.
Psychomatics holds the potential to yield transformative insights into the nature of language, cognition, and intelligence.
arXiv Detail & Related papers (2024-07-23T12:53:41Z) - Decoding AI and Human Authorship: Nuances Revealed Through NLP and Statistical Analysis [0.0]
This research explores the nuanced differences in texts produced by AI and those written by humans.
The study investigates various linguistic traits, patterns of creativity, and potential biases inherent in human-written and AI- generated texts.
arXiv Detail & Related papers (2024-07-15T18:09:03Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - Interactive Natural Language Processing [67.87925315773924]
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP.
This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept.
arXiv Detail & Related papers (2023-05-22T17:18:29Z) - Machine Psychology [54.287802134327485]
We argue that a fruitful direction for research is engaging large language models in behavioral experiments inspired by psychology.
We highlight theoretical perspectives, experimental paradigms, and computational analysis techniques that this approach brings to the table.
It paves the way for a "machine psychology" for generative artificial intelligence (AI) that goes beyond performance benchmarks.
arXiv Detail & Related papers (2023-03-24T13:24:41Z) - Dissociating language and thought in large language models [52.39241645471213]
Large Language Models (LLMs) have come closest among all models to date to mastering human language.
We ground this distinction in human neuroscience, which has shown that formal and functional competence rely on different neural mechanisms.
Although LLMs are surprisingly good at formal competence, their performance on functional competence tasks remains spotty.
arXiv Detail & Related papers (2023-01-16T22:41:19Z) - Context Limitations Make Neural Language Models More Human-Like [32.488137777336036]
We show discrepancies in context access between modern neural language models (LMs) and humans in incremental sentence processing.
Additional context limitation was needed to make LMs better simulate human reading behavior.
Our analyses also showed that human-LM gaps in memory access are associated with specific syntactic constructions.
arXiv Detail & Related papers (2022-05-23T17:01:13Z) - Experience Grounds Language [185.73483760454454]
Language understanding research is held back by a failure to relate language to the physical world it describes and to the social interactions it facilitates.
Despite the incredible effectiveness of language processing models to tackle tasks after being trained on text alone, successful linguistic communication relies on a shared experience of the world.
arXiv Detail & Related papers (2020-04-21T16:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.