Not All Water Consumption Is Equal: A Water Stress Weighted Metric for Sustainable Computing
- URL: http://arxiv.org/abs/2506.22773v2
- Date: Tue, 01 Jul 2025 17:12:12 GMT
- Title: Not All Water Consumption Is Equal: A Water Stress Weighted Metric for Sustainable Computing
- Authors: Yanran Wu, Inez Hua, Yi Ding,
- Abstract summary: We present SCARF, the first framework that evaluates water impact of computing by factoring in both spatial and temporal variations in water stress.<n>ScarF calculates an Adjusted Water Impact (AWI) metric that considers both consumption volume and local water stress over time.<n>We show the hidden opportunities for reducing water impact by optimizing location and time choices, paving the way for water-sustainable computing.
- Score: 2.5832043241251337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Water consumption is an increasingly critical dimension of computing sustainability, especially as AI workloads rapidly scale. However, current water impact assessment often overlooks where and when water stress is more severe. To fill in this gap, we present SCARF, the first general framework that evaluates water impact of computing by factoring in both spatial and temporal variations in water stress. SCARF calculates an Adjusted Water Impact (AWI) metric that considers both consumption volume and local water stress over time. Through three case studies on LLM serving, datacenters, and semiconductor fabrication plants, we show the hidden opportunities for reducing water impact by optimizing location and time choices, paving the way for water-sustainable computing. The code is available at https://github.com/jojacola/SCARF.
Related papers
- Depth-Constrained ASV Navigation with Deep RL and Limited Sensing [45.77464360746532]
We propose a reinforcement learning framework for ASV navigation under depth constraints.<n>To enhance environmental awareness, we integrate GP regression into the RL framework.<n>We demonstrate effective sim-to-real transfer, ensuring that trained policies generalize well to real-world aquatic conditions.
arXiv Detail & Related papers (2025-04-25T10:56:56Z) - Water Mapping and Change Detection Using Time Series Derived from the Continuous Monitoring of Land Disturbance Algorithm [5.426703801207648]
The Continuous Monitoring of Land Disturbance (COLD) algorithm provides a valuable tool for real-time analysis of land changes.<n>This paper assesses the effectiveness of the algorithm to estimate water bodies and track pixel-level water trends over time.
arXiv Detail & Related papers (2025-04-04T04:59:46Z) - Towards an Autonomous Surface Vehicle Prototype for Artificial Intelligence Applications of Water Quality Monitoring [68.41400824104953]
This paper presents a vehicle prototype that addresses the use of Artificial Intelligence algorithms and enhanced sensing techniques for water quality monitoring.
The vehicle is fully equipped with high-quality sensors to measure water quality parameters and water depth.
By means of a stereo-camera, it also can detect and locate macro-plastics in real environments.
arXiv Detail & Related papers (2024-10-08T10:35:32Z) - SEN12-WATER: A New Dataset for Hydrological Applications and its Benchmarking [40.996860106131244]
Climate and increasing droughts pose significant challenges to water resource management around the world.
We present a new dataset, SEN12-WATER, along with a benchmark using a end-to-end Deep Learning framework for proactive drought-related analysis.
arXiv Detail & Related papers (2024-09-25T16:50:59Z) - A Dataset for Research on Water Sustainability [18.979261592551676]
We build a dataset for operation direct water usage in the cooling systems and indirect water embedded in electricity generation.
Our dataset consists of the hourly water efficiency of major U.S. cities and states from 2019 to 2023.
We present a preliminary analysis of our dataset and discuss three potential applications that can benefit from it.
arXiv Detail & Related papers (2024-05-24T02:59:52Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
Flood inundation forecast provides critical information for emergency planning before and during flood events.
High-resolution hydrodynamic modeling has become more accessible in recent years, however, predicting flood extents at the street and building levels in real-time is still computationally demanding.
We present a hybrid process-based and data-driven machine learning (ML) approach for flood extent and inundation depth prediction.
arXiv Detail & Related papers (2023-07-29T22:49:50Z) - DeepAqua: Self-Supervised Semantic Segmentation of Wetland Surface Water
Extent with SAR Images using Knowledge Distillation [44.99833362998488]
We present DeepAqua, a self-supervised deep learning model that eliminates the need for manual annotations during the training phase.
We exploit cases where optical- and radar-based water masks coincide, enabling the detection of both open and vegetated water surfaces.
Experimental results show that DeepAqua outperforms other unsupervised methods by improving accuracy by 7%, Intersection Over Union by 27%, and F1 score by 14%.
arXiv Detail & Related papers (2023-05-02T18:06:21Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
We introduce a deep learning approach for the retrieval of wind speed time series from underwater acoustics.
Our approach bridges data assimilation and learning-based frameworks to benefit both from prior physical knowledge and computational efficiency.
arXiv Detail & Related papers (2022-08-18T15:27:40Z) - Water Level Estimation Using Sentinel-1 Synthetic Aperture Radar Imagery
And Digital Elevation Models [0.0]
We propose a novel water level extracting approach, which employs Sentinel-1 Synthetic Aperture Radar imagery and Digital Elevation Model data sets.
Experiments show that the algorithm achieved a low average error of 0.93 meters over three reservoirs globally.
arXiv Detail & Related papers (2020-12-11T18:42:15Z) - Water Quality Prediction on a Sigfox-compliant IoT Device: The Road
Ahead of WaterS [0.27998963147546135]
We focus on an Internet of Things water quality prediction system, namely WaterS, that can remotely communicate the gathered measurements.
The solution addresses the water pollution problem while taking into account the peculiar Internet of Things constraints such as energy efficiency and autonomy.
The source code of WaterS ecosystem has been released as open-source, to encourage and promote research activities from both Industry and Academia.
arXiv Detail & Related papers (2020-07-27T11:21:40Z) - Predictive Analytics for Water Asset Management: Machine Learning and
Survival Analysis [55.41644538483948]
We study a statistical and machine learning framework for the prediction of water pipe failures.
We use a dataset containing the failure records of all pipes within the water distribution network in Barcelona, Spain.
The results shed light on the effect of important risk factors, such as pipe geometry, age, material, and soil cover, among others.
arXiv Detail & Related papers (2020-07-02T19:08:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.