Improving Rationality in the Reasoning Process of Language Models through Self-playing Game
- URL: http://arxiv.org/abs/2506.22920v2
- Date: Sun, 06 Jul 2025 13:58:07 GMT
- Title: Improving Rationality in the Reasoning Process of Language Models through Self-playing Game
- Authors: Pinzheng Wang, Juntao Li, Zecheng Tang, Haijia Gui, Min zhang,
- Abstract summary: We design a Critic-Discernment Game (CDG) in which a prover first provides a solution to a given problem and is subsequently challenged by critiques of its solution.<n>The objective of the prover is to maintain the correct answer when faced with misleading comments, while correcting errors in response to constructive feedback.<n>Our experiments on tasks involving mathematical reasoning, stepwise error detection, self-correction, and long-chain reasoning demonstrate that CDG training can significantly improve the ability of well-aligned LLMs to comprehend their reasoning process.
- Score: 25.193698725021108
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated considerable reasoning abilities in various tasks such as mathematics and coding. However, recent studies indicate that even the best models lack true comprehension of their reasoning processes. In this paper, we explore how self-play can enhance the rationality of models in the reasoning process without supervision from humans or superior models. We design a Critic-Discernment Game(CDG) in which a prover first provides a solution to a given problem and is subsequently challenged by critiques of its solution. These critiques either aim to assist or mislead the prover. The objective of the prover is to maintain the correct answer when faced with misleading comments, while correcting errors in response to constructive feedback. Our experiments on tasks involving mathematical reasoning, stepwise error detection, self-correction, and long-chain reasoning demonstrate that CDG training can significantly improve the ability of well-aligned LLMs to comprehend their reasoning process.
Related papers
- Self-Critique Guided Iterative Reasoning for Multi-hop Question Answering [24.446222685949227]
Large language models (LLMs) face challenges in knowledge-intensive multi-hop reasoning.<n>We propose Self-Critique Guided Iterative Reasoning (SiGIR)<n>SiGIR uses self-critique feedback to guide the iterative reasoning process.
arXiv Detail & Related papers (2025-05-25T12:10:24Z) - LINGOLY-TOO: Disentangling Reasoning from Knowledge with Templatised Orthographic Obfuscation [1.2576388595811496]
We introduce LINGOLY-TOO, a challenging reasoning benchmark grounded in natural language.<n>We permute reasoning problems written in real languages to generate numerous question variations.<n>Experiments and analyses show that models can circumvent reasoning and answer from prior knowledge.
arXiv Detail & Related papers (2025-03-04T19:57:47Z) - FINEREASON: Evaluating and Improving LLMs' Deliberate Reasoning through Reflective Puzzle Solving [90.88021670297664]
FINEREASON is a logic-puzzle benchmark for evaluation of large language models' reasoning capabilities.<n>We introduce two tasks: state checking, and state transition, for a comprehensive evaluation of how models assess the current situation and plan the next move.<n>We show that models trained on our state checking and transition data demonstrate gains in math reasoning by up to 5.1% on GSM8K.
arXiv Detail & Related papers (2025-02-27T16:23:25Z) - Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision [120.40788744292739]
We propose a two-player paradigm that separates the roles of reasoning and critique models.
We first propose AutoMathCritique, an automated and scalable framework for collecting critique data.
We demonstrate that the critique models consistently improve the actor's performance on difficult queries at test-time.
arXiv Detail & Related papers (2024-11-25T17:11:54Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
We introduce a novel structure-oriented analysis method to help Large Language Models (LLMs) better understand a question.
To further improve the reliability in complex question-answering tasks, we propose a multi-agent reasoning system, Structure-oriented Autonomous Reasoning Agents (SARA)
Extensive experiments verify the effectiveness of the proposed reasoning system. Surprisingly, in some cases, the system even surpasses few-shot methods.
arXiv Detail & Related papers (2024-10-18T05:30:33Z) - Can We Further Elicit Reasoning in LLMs? Critic-Guided Planning with Retrieval-Augmentation for Solving Challenging Tasks [68.49251303172674]
State-of-the-art large language models (LLMs) exhibit impressive problem-solving capabilities but may struggle with complex reasoning and factual correctness.
Existing methods harness the strengths of chain-of-thought and retrieval-augmented generation (RAG) to decompose a complex problem into simpler steps and apply retrieval to improve factual correctness.
We introduce Critic-guided planning with Retrieval-augmentation, CR-Planner, a novel framework that leverages fine-tuned critic models to guide both reasoning and retrieval processes through planning.
arXiv Detail & Related papers (2024-10-02T11:26:02Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
We take a closer look at the self-verification abilities of large language models (LLMs) in the context of logical reasoning.
Our main findings suggest that existing LLMs could struggle to identify fallacious reasoning steps accurately and may fall short of guaranteeing the validity of self-verification methods.
arXiv Detail & Related papers (2023-11-14T07:13:10Z) - Faithful Reasoning Using Large Language Models [12.132449274592668]
We show how LMs can be made to perform faithful multi-step reasoning via a process whose causal structure mirrors the underlying logical structure of the problem.
Our approach works by chaining together reasoning steps, where each step results from calls to two fine-tuned LMs.
We demonstrate the effectiveness of our model on multi-step logical deduction and scientific question-answering, showing that it outperforms baselines on final answer accuracy.
arXiv Detail & Related papers (2022-08-30T13:44:41Z) - Chain of Thought Prompting Elicits Reasoning in Large Language Models [56.811278668446825]
This paper explores the ability of language models to generate a coherent chain of thought.
Experiments show that inducing a chain of thought via prompting can enable sufficiently large language models to better perform reasoning tasks.
arXiv Detail & Related papers (2022-01-28T02:33:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.