ActAlign: Zero-Shot Fine-Grained Video Classification via Language-Guided Sequence Alignment
- URL: http://arxiv.org/abs/2506.22967v2
- Date: Mon, 04 Aug 2025 16:54:44 GMT
- Title: ActAlign: Zero-Shot Fine-Grained Video Classification via Language-Guided Sequence Alignment
- Authors: Amir Aghdam, Vincent Tao Hu, Björn Ommer,
- Abstract summary: We propose ActAlign, a zero-shot, training-free method that formulates video classification as a sequence alignment problem.<n>For each class, a large language model (LLM) generates an ordered sequence of sub-actions, which we align with video frames using Dynamic Time Warping (DTW) in a shared embedding space.<n>Our approach is model-agnostic and domain-general, demonstrating that structured language priors combined with classical alignment methods can unlock the open-set recognition potential of image-language models for fine-grained video understanding.
- Score: 25.721829124345106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the task of zero-shot video classification for extremely fine-grained actions (e.g., Windmill Dunk in basketball), where no video examples or temporal annotations are available for unseen classes. While image-language models (e.g., CLIP, SigLIP) show strong open-set recognition, they lack temporal modeling needed for video understanding. We propose ActAlign, a truly zero-shot, training-free method that formulates video classification as a sequence alignment problem, preserving the generalization strength of pretrained image-language models. For each class, a large language model (LLM) generates an ordered sequence of sub-actions, which we align with video frames using Dynamic Time Warping (DTW) in a shared embedding space. Without any video-text supervision or fine-tuning, ActAlign achieves 30.5% accuracy on ActionAtlas--the most diverse benchmark of fine-grained actions across multiple sports--where human performance is only 61.6%. ActAlign outperforms billion-parameter video-language models while using 8x fewer parameters. Our approach is model-agnostic and domain-general, demonstrating that structured language priors combined with classical alignment methods can unlock the open-set recognition potential of image-language models for fine-grained video understanding.
Related papers
- Storyboard guided Alignment for Fine-grained Video Action Recognition [32.02631248389487]
Fine-grained video action recognition can be conceptualized as a video-text matching problem.
We propose a multi-granularity framework based on two observations: (i) videos with different global semantics may share similar atomic actions or appearances, and (ii) atomic actions within a video can be momentary, slow, or even non-directly related to the global video semantics.
arXiv Detail & Related papers (2024-10-18T07:40:41Z) - OmniVid: A Generative Framework for Universal Video Understanding [133.73878582161387]
We seek to unify the output space of video understanding tasks by using languages as labels and additionally introducing time and box tokens.
This enables us to address various types of video tasks, including classification, captioning, and localization.
We demonstrate such a simple and straightforward idea is quite effective and can achieve state-of-the-art or competitive results.
arXiv Detail & Related papers (2024-03-26T17:59:24Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Grounding [108.79026216923984]
Video grounding aims to localize a-temporal section in a video corresponding to an input text query.
This paper addresses a critical limitation in current video grounding methodologies by introducing an Open-Vocabulary Spatio-Temporal Video Grounding task.
arXiv Detail & Related papers (2023-12-31T13:53:37Z) - Align before Adapt: Leveraging Entity-to-Region Alignments for Generalizable Video Action Recognition [16.828560953073495]
We propose a novel "Align before Adapt" (ALT) paradigm for video representation learning.
We exploit the entity-to-region alignments for each frame. The alignments are fulfilled by matching the region-aware image embeddings to an offline-constructed text corpus.
ALT demonstrates competitive performance while maintaining remarkably low computational costs.
arXiv Detail & Related papers (2023-11-27T08:32:28Z) - VideoCon: Robust Video-Language Alignment via Contrast Captions [80.08882631838914]
Video-language alignment models are not robust to semantically-plausible contrastive changes in the video captions.
Our work identifies a broad spectrum of contrast misalignments, such as replacing entities, actions, and flipping event order.
Our model sets new state of the art zero-shot performance in temporally-extensive video-language tasks.
arXiv Detail & Related papers (2023-11-15T19:51:57Z) - Zero-Shot Dense Video Captioning by Jointly Optimizing Text and Moment [10.567291051485194]
We propose ZeroTA, a novel method for dense video captioning in a zero-shot manner.
Our method does not require any videos or annotations for training; instead, it localizes and describes events within each input video at test time.
arXiv Detail & Related papers (2023-07-05T23:01:26Z) - MAtch, eXpand and Improve: Unsupervised Finetuning for Zero-Shot Action
Recognition with Language Knowledge [35.45809761628721]
Large scale Vision-Language (VL) models have shown tremendous success in aligning representations between visual and text modalities.
We propose an unsupervised approach to tuning video data for best zero-shot action recognition performance.
Our resulting models demonstrate high transferability to numerous unseen zero-shot downstream tasks.
arXiv Detail & Related papers (2023-03-15T20:17:41Z) - Temporal Perceiving Video-Language Pre-training [112.1790287726804]
This work introduces a novel text-video localization pre-text task to enable fine-grained temporal and semantic alignment.
Specifically, text-video localization consists of moment retrieval, which predicts start and end boundaries in videos given the text description.
Our method connects the fine-grained frame representations with the word representations and implicitly distinguishes representations of different instances in the single modality.
arXiv Detail & Related papers (2023-01-18T12:15:47Z) - Expanding Language-Image Pretrained Models for General Video Recognition [136.0948049010682]
Contrastive language-image pretraining has shown great success in learning visual-textual joint representation from web-scale data.
We present a simple yet effective approach that adapts the pretrained language-image models to video recognition directly.
Our approach surpasses the current state-of-the-art methods by +7.6% and +14.9% in terms of top-1 accuracy under two popular protocols.
arXiv Detail & Related papers (2022-08-04T17:59:54Z) - Revealing Single Frame Bias for Video-and-Language Learning [115.01000652123882]
We show that a single-frame trained model can achieve better performance than existing methods that use multiple frames for training.
This result reveals the existence of a strong "static appearance bias" in popular video-and-language datasets.
We propose two new retrieval tasks based on existing fine-grained action recognition datasets that encourage temporal modeling.
arXiv Detail & Related papers (2022-06-07T16:28:30Z) - Unsupervised Pre-training for Temporal Action Localization Tasks [76.01985780118422]
We propose a self-supervised pretext task, coined as Pseudo Action localization (PAL) to Unsupervisedly Pre-train feature encoders for Temporal Action localization tasks (UP-TAL)
Specifically, we first randomly select temporal regions, each of which contains multiple clips, from one video as pseudo actions and then paste them onto different temporal positions of the other two videos.
The pretext task is to align the features of pasted pseudo action regions from two synthetic videos and maximize the agreement between them.
arXiv Detail & Related papers (2022-03-25T12:13:43Z) - Align and Prompt: Video-and-Language Pre-training with Entity Prompts [111.23364631136339]
Video-and-language pre-training has shown promising improvements on various downstream tasks.
We propose Align and Prompt: an efficient and effective video-and-language pre-training framework with better cross-modal alignment.
Our code and pre-trained models will be released.
arXiv Detail & Related papers (2021-12-17T15:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.