FairI Tales: Evaluation of Fairness in Indian Contexts with a Focus on Bias and Stereotypes
- URL: http://arxiv.org/abs/2506.23111v1
- Date: Sun, 29 Jun 2025 06:31:06 GMT
- Title: FairI Tales: Evaluation of Fairness in Indian Contexts with a Focus on Bias and Stereotypes
- Authors: Janki Atul Nawale, Mohammed Safi Ur Rahman Khan, Janani D, Mansi Gupta, Danish Pruthi, Mitesh M. Khapra,
- Abstract summary: Existing studies on fairness are largely Western-focused, making them inadequate for culturally diverse countries such as India.<n>We introduce INDIC-BIAS, a comprehensive India-centric benchmark designed to evaluate fairness of LLMs across 85 socio identity groups.
- Score: 23.71105683137539
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing studies on fairness are largely Western-focused, making them inadequate for culturally diverse countries such as India. To address this gap, we introduce INDIC-BIAS, a comprehensive India-centric benchmark designed to evaluate fairness of LLMs across 85 identity groups encompassing diverse castes, religions, regions, and tribes. We first consult domain experts to curate over 1,800 socio-cultural topics spanning behaviors and situations, where biases and stereotypes are likely to emerge. Grounded in these topics, we generate and manually validate 20,000 real-world scenario templates to probe LLMs for fairness. We structure these templates into three evaluation tasks: plausibility, judgment, and generation. Our evaluation of 14 popular LLMs on these tasks reveals strong negative biases against marginalized identities, with models frequently reinforcing common stereotypes. Additionally, we find that models struggle to mitigate bias even when explicitly asked to rationalize their decision. Our evaluation provides evidence of both allocative and representational harms that current LLMs could cause towards Indian identities, calling for a more cautious usage in practical applications. We release INDIC-BIAS as an open-source benchmark to advance research on benchmarking and mitigating biases and stereotypes in the Indian context.
Related papers
- Robustly Improving LLM Fairness in Realistic Settings via Interpretability [0.16843915833103415]
Anti-bias prompts fail when realistic contextual details are introduced.<n>We find that adding realistic context such as company names, culture descriptions from public careers pages, and selective hiring constraints induces significant racial and gender biases.<n>Our internal bias mitigation identifies race and gender-correlated directions and applies affine concept editing at inference time.
arXiv Detail & Related papers (2025-06-12T17:34:38Z) - DECASTE: Unveiling Caste Stereotypes in Large Language Models through Multi-Dimensional Bias Analysis [20.36241144630387]
Large language models (LLMs) have revolutionized natural language processing (NLP)<n>LLMs have been shown to reflect and perpetuate harmful societal biases, including those based on ethnicity, gender, and religion.<n>We propose DECASTE, a novel framework designed to detect and assess both implicit and explicit caste biases in LLMs.
arXiv Detail & Related papers (2025-05-20T23:19:13Z) - Sometimes the Model doth Preach: Quantifying Religious Bias in Open LLMs through Demographic Analysis in Asian Nations [8.769839351949997]
Large Language Models (LLMs) are capable of generating opinions and propagating bias unknowingly.<n>Our work proposes a novel method that quantitatively analyzes the opinions generated by LLMs.<n>We evaluate modern, open LLMs such as Llama and Mistral on surveys conducted in various global south countries.
arXiv Detail & Related papers (2025-03-10T16:32:03Z) - GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing [72.0343083866144]
This paper introduces the GenderBias-emphVL benchmark to evaluate occupation-related gender bias in Large Vision-Language Models.
Using our benchmark, we extensively evaluate 15 commonly used open-source LVLMs and state-of-the-art commercial APIs.
Our findings reveal widespread gender biases in existing LVLMs.
arXiv Detail & Related papers (2024-06-30T05:55:15Z) - VLBiasBench: A Comprehensive Benchmark for Evaluating Bias in Large Vision-Language Model [72.13121434085116]
We introduce VLBiasBench, a benchmark to evaluate biases in Large Vision-Language Models (LVLMs)<n>VLBiasBench features a dataset that covers nine distinct categories of social biases, including age, disability status, gender, nationality, physical appearance, race, religion, profession, social economic status, as well as two intersectional bias categories: race x gender and race x social economic status.<n>We conduct extensive evaluations on 15 open-source models as well as two advanced closed-source models, yielding new insights into the biases present in these models.
arXiv Detail & Related papers (2024-06-20T10:56:59Z) - Evaluating Implicit Bias in Large Language Models by Attacking From a Psychometric Perspective [66.34066553400108]
We conduct a rigorous evaluation of large language models' implicit bias towards certain demographics.<n>Inspired by psychometric principles, we propose three attack approaches, i.e., Disguise, Deception, and Teaching.<n>Our methods can elicit LLMs' inner bias more effectively than competitive baselines.
arXiv Detail & Related papers (2024-06-20T06:42:08Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
Large language models (LLMs) have gained popularity and are being widely adopted by a large user community.
The existing evaluation methods have many constraints, and their results exhibit a limited degree of interpretability.
We propose a bias evaluation framework named GPTBIAS that leverages the high performance of LLMs to assess bias in models.
arXiv Detail & Related papers (2023-12-11T12:02:14Z) - Indian-BhED: A Dataset for Measuring India-Centric Biases in Large Language Models [18.201326983938014]
Large Language Models (LLMs) can encode societal biases, exposing their users to representational harms.
We quantify stereotypical bias in popular LLMs according to an Indian-centric frame through Indian-BhED, a first of its kind dataset.
We find that the majority of LLMs tested have a strong propensity to output stereotypes in the Indian context.
arXiv Detail & Related papers (2023-09-15T17:38:41Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z) - Re-contextualizing Fairness in NLP: The Case of India [9.919007681131804]
We focus on NLP fair-ness in the context of India.
We build resources for fairness evaluation in the Indian context.
We then delve deeper into social stereotypes for Region andReligion, demonstrating its prevalence in corpora and models.
arXiv Detail & Related papers (2022-09-25T13:56:13Z) - Towards Understanding and Mitigating Social Biases in Language Models [107.82654101403264]
Large-scale pretrained language models (LMs) can be potentially dangerous in manifesting undesirable representational biases.
We propose steps towards mitigating social biases during text generation.
Our empirical results and human evaluation demonstrate effectiveness in mitigating bias while retaining crucial contextual information.
arXiv Detail & Related papers (2021-06-24T17:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.