Indian-BhED: A Dataset for Measuring India-Centric Biases in Large Language Models
- URL: http://arxiv.org/abs/2309.08573v2
- Date: Fri, 9 Aug 2024 09:36:00 GMT
- Title: Indian-BhED: A Dataset for Measuring India-Centric Biases in Large Language Models
- Authors: Khyati Khandelwal, Manuel Tonneau, Andrew M. Bean, Hannah Rose Kirk, Scott A. Hale,
- Abstract summary: Large Language Models (LLMs) can encode societal biases, exposing their users to representational harms.
We quantify stereotypical bias in popular LLMs according to an Indian-centric frame through Indian-BhED, a first of its kind dataset.
We find that the majority of LLMs tested have a strong propensity to output stereotypes in the Indian context.
- Score: 18.201326983938014
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs), now used daily by millions, can encode societal biases, exposing their users to representational harms. A large body of scholarship on LLM bias exists but it predominantly adopts a Western-centric frame and attends comparatively less to bias levels and potential harms in the Global South. In this paper, we quantify stereotypical bias in popular LLMs according to an Indian-centric frame through Indian-BhED, a first of its kind dataset, containing stereotypical and anti-stereotypical examples in the context of caste and religious stereotypes in India. We find that the majority of LLMs tested have a strong propensity to output stereotypes in the Indian context, especially when compared to axes of bias traditionally studied in the Western context, such as gender and race. Notably, we find that GPT-2, GPT-2 Large, and GPT 3.5 have a particularly high propensity for preferring stereotypical outputs as a percent of all sentences for the axes of caste (63-79%) and religion (69-72%). We finally investigate potential causes for such harmful behaviour in LLMs, and posit intervention techniques to reduce both stereotypical and anti-stereotypical biases. The findings of this work highlight the need for including more diverse voices when researching fairness in AI and evaluating LLMs.
Related papers
- Bias in LLMs as Annotators: The Effect of Party Cues on Labelling Decision by Large Language Models [0.0]
We test similar biases in Large Language Models (LLMs) as annotators.
Unlike humans, who are only biased when faced with statements from extreme parties, LLMs exhibit significant bias even when prompted with statements from center-left and center-right parties.
arXiv Detail & Related papers (2024-08-28T16:05:20Z) - Spoken Stereoset: On Evaluating Social Bias Toward Speaker in Speech Large Language Models [50.40276881893513]
This study introduces Spoken Stereoset, a dataset specifically designed to evaluate social biases in Speech Large Language Models (SLLMs)
By examining how different models respond to speech from diverse demographic groups, we aim to identify these biases.
The findings indicate that while most models show minimal bias, some still exhibit slightly stereotypical or anti-stereotypical tendencies.
arXiv Detail & Related papers (2024-08-14T16:55:06Z) - Who is better at math, Jenny or Jingzhen? Uncovering Stereotypes in Large Language Models [9.734705470760511]
We use GlobalBias to study a broad set of stereotypes from around the world.
We generate character profiles based on given names and evaluate the prevalence of stereotypes in model outputs.
arXiv Detail & Related papers (2024-07-09T14:52:52Z) - White Men Lead, Black Women Help? Benchmarking Language Agency Social Biases in LLMs [58.27353205269664]
Social biases can manifest in language agency.
We introduce the novel Language Agency Bias Evaluation benchmark.
We unveil language agency social biases in 3 recent Large Language Model (LLM)-generated content.
arXiv Detail & Related papers (2024-04-16T12:27:54Z) - Large Language Models are Geographically Biased [47.88767211956144]
We study what Large Language Models (LLMs) know about the world we live in through the lens of geography.
We show various problematic geographic biases, which we define as systemic errors in geospatial predictions.
arXiv Detail & Related papers (2024-02-05T02:32:09Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
Large language models (LLMs) have gained popularity and are being widely adopted by a large user community.
The existing evaluation methods have many constraints, and their results exhibit a limited degree of interpretability.
We propose a bias evaluation framework named GPTBIAS that leverages the high performance of LLMs to assess bias in models.
arXiv Detail & Related papers (2023-12-11T12:02:14Z) - What Do Llamas Really Think? Revealing Preference Biases in Language
Model Representations [62.91799637259657]
Do large language models (LLMs) exhibit sociodemographic biases, even when they decline to respond?
We study this research question by probing contextualized embeddings and exploring whether this bias is encoded in its latent representations.
We propose a logistic Bradley-Terry probe which predicts word pair preferences of LLMs from the words' hidden vectors.
arXiv Detail & Related papers (2023-11-30T18:53:13Z) - Bias Runs Deep: Implicit Reasoning Biases in Persona-Assigned LLMs [67.51906565969227]
We study the unintended side-effects of persona assignment on the ability of LLMs to perform basic reasoning tasks.
Our study covers 24 reasoning datasets, 4 LLMs, and 19 diverse personas (e.g. an Asian person) spanning 5 socio-demographic groups.
arXiv Detail & Related papers (2023-11-08T18:52:17Z) - Investigating Subtler Biases in LLMs: Ageism, Beauty, Institutional, and Nationality Bias in Generative Models [0.0]
This paper investigates bias along less-studied but still consequential, dimensions, such as age and beauty.
We ask whether LLMs hold wide-reaching biases of positive or negative sentiment for specific social groups similar to the "what is beautiful is good" bias found in people in experimental psychology.
arXiv Detail & Related papers (2023-09-16T07:07:04Z) - Gender bias and stereotypes in Large Language Models [0.6882042556551611]
This paper investigates Large Language Models' behavior with respect to gender stereotypes.
We use a simple paradigm to test the presence of gender bias, building on but differing from WinoBias.
Our contributions in this paper are as follows: (a) LLMs are 3-6 times more likely to choose an occupation that stereotypically aligns with a person's gender; (b) these choices align with people's perceptions better than with the ground truth as reflected in official job statistics; (d) LLMs ignore crucial ambiguities in sentence structure 95% of the time in our study items, but when explicitly prompted, they recognize
arXiv Detail & Related papers (2023-08-28T22:32:05Z) - CrowS-Pairs: A Challenge Dataset for Measuring Social Biases in Masked
Language Models [30.582132471411263]
We introduce the Crowd Stereotype Pairs benchmark (CrowS-Pairs)
CrowS-Pairs has 1508 examples that cover stereotypes dealing with nine types of bias, like race, religion, and age.
We find that all three of the widely-used sentences we evaluate substantially favor stereotypes in every category in CrowS-Pairs.
arXiv Detail & Related papers (2020-09-30T22:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.