Enhanced Continual Learning of Vision-Language Models with Model Fusion
- URL: http://arxiv.org/abs/2503.10705v2
- Date: Fri, 21 Mar 2025 09:15:37 GMT
- Title: Enhanced Continual Learning of Vision-Language Models with Model Fusion
- Authors: Haoyuan Gao, Zicong Zhang, Yuqi Wei, Linglan Zhao, Guilin Li, Yexin Li, Linghe Kong, Weiran Huang,
- Abstract summary: Vision-Language Models (VLMs) represent a breakthrough in artificial intelligence.<n>VLMs are susceptible to catastrophic forgetting when sequentially fine-tuned on multiple downstream tasks.<n>We propose Continual Decoupling-Unifying (ConDU), a novel approach, by introducing model fusion into continual learning.
- Score: 16.764069327701186
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-Language Models (VLMs) represent a breakthrough in artificial intelligence by integrating visual and textual modalities to achieve impressive zero-shot capabilities. However, VLMs are susceptible to catastrophic forgetting when sequentially fine-tuned on multiple downstream tasks. Existing continual learning methods for VLMs often rely heavily on additional reference datasets, compromise zero-shot performance, or are limited to parameter-efficient fine-tuning scenarios. In this paper, we propose Continual Decoupling-Unifying (ConDU), a novel approach, by introducing model fusion into continual learning for VLMs. ConDU maintains a unified model along with task triggers and prototype sets, employing an iterative process of decoupling task-specific models for previous tasks and unifying them with the model for the newly learned task. Additionally, we introduce an inference strategy for zero-shot scenarios by aggregating predictions from multiple decoupled task-specific models. Extensive experiments across various settings show that ConDU achieves up to a 2\% improvement in average performance across all seen tasks compared to state-of-the-art baselines, while also enhancing zero-shot capabilities relative to the original VLM.
Related papers
- CAFe: Unifying Representation and Generation with Contrastive-Autoregressive Finetuning [24.981279071712173]
We introduce CAFe, a contrastive-autoregressive fine-tuning framework that enhances LVLMs for both representation and generative tasks.
Our approach unifies these traditionally separate tasks, achieving state-of-the-art results in both multimodal retrieval and multimodal generative benchmarks.
arXiv Detail & Related papers (2025-03-25T17:57:17Z) - Active Learning for Vision-Language Models [29.309503214127016]
We propose a novel active learning (AL) framework that enhances the zero-shot classification performance of vision-language models (VLMs)
Our approach first calibrates the predicted entropy of VLMs and then utilizes a combination of self-uncertainty and neighbor-aware uncertainty to calculate a reliable uncertainty measure for active sample selection.
Our experiments show that the proposed approach outperforms existing AL approaches on several image classification datasets.
arXiv Detail & Related papers (2024-10-29T16:25:50Z) - ADEM-VL: Adaptive and Embedded Fusion for Efficient Vision-Language Tuning [38.26304604660713]
ADEM-VL is an efficient vision-language method that tunes models based on pretrained large language models.
Our framework surpasses existing methods by an average accuracy of 0.77% on ScienceQA dataset.
arXiv Detail & Related papers (2024-10-23T11:31:06Z) - VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks [60.5257456681402]
We study the potential for building universal embeddings capable of handling a wide range of downstream tasks.<n>We build a series of VLM2Vec models on SoTA VLMs like Phi-3.5-V, LLaVA-1.6 and evaluate them on MMEB's evaluation split.<n>Our results show that VLM2Vec achieves an absolute average improvement of 10% to 20% over existing multimodal embedding models.
arXiv Detail & Related papers (2024-10-07T16:14:05Z) - Enhancing Continual Learning in Visual Question Answering with Modality-Aware Feature Distillation [48.071162716120334]
We study how the multimodal nature of the input affects the learning dynamics of a model.
Motivated by this observation, we propose a modality-aware feature distillation (MAFED) approach.
arXiv Detail & Related papers (2024-06-27T16:12:57Z) - Boosting Continual Learning of Vision-Language Models via Mixture-of-Experts Adapters [65.15700861265432]
We present a parameter-efficient continual learning framework to alleviate long-term forgetting in incremental learning with vision-language models.
Our approach involves the dynamic expansion of a pre-trained CLIP model, through the integration of Mixture-of-Experts (MoE) adapters.
To preserve the zero-shot recognition capability of vision-language models, we introduce a Distribution Discriminative Auto-Selector.
arXiv Detail & Related papers (2024-03-18T08:00:23Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
This paper introduces an innovative technique called Adaptive Model Merging (AdaMerging)
It aims to autonomously learn the coefficients for model merging, either in a task-wise or layer-wise manner, without relying on the original training data.
Compared to the current state-of-the-art task arithmetic merging scheme, AdaMerging showcases a remarkable 11% improvement in performance.
arXiv Detail & Related papers (2023-10-04T04:26:33Z) - Multi-View Class Incremental Learning [57.14644913531313]
Multi-view learning (MVL) has gained great success in integrating information from multiple perspectives of a dataset to improve downstream task performance.
This paper investigates a novel paradigm called multi-view class incremental learning (MVCIL), where a single model incrementally classifies new classes from a continual stream of views.
arXiv Detail & Related papers (2023-06-16T08:13:41Z) - Enabling Multimodal Generation on CLIP via Vision-Language Knowledge
Distillation [79.72299298976525]
We propose to augment a vision-language pre-training model with a textual pre-trained language model (PLM) via vision-language knowledge distillation (VLKD)
Experiments show that the resulting model has strong zero-shot performance on multimodal generation tasks, such as open-ended visual question answering and image captioning.
The original textual language understanding and generation ability of the PLM is maintained after VLKD, which makes our model versatile for both multimodal and unimodal tasks.
arXiv Detail & Related papers (2022-03-12T09:33:37Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
We propose Model-Agnostic Multitask Fine-tuning (MAMF) for vision-language models on unseen tasks.
Compared with model-agnostic meta-learning (MAML), MAMF discards the bi-level optimization and uses only first-order gradients.
We show that MAMF consistently outperforms the classical fine-tuning method for few-shot transfer learning on five benchmark datasets.
arXiv Detail & Related papers (2022-03-09T17:26:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.