VisualPrompter: Prompt Optimization with Visual Feedback for Text-to-Image Synthesis
- URL: http://arxiv.org/abs/2506.23138v1
- Date: Sun, 29 Jun 2025 08:24:39 GMT
- Title: VisualPrompter: Prompt Optimization with Visual Feedback for Text-to-Image Synthesis
- Authors: Shiyu Wu, Mingzhen Sun, Weining Wang, Yequan Wang, Jing Liu,
- Abstract summary: VisualPrompter is a training-free prompt engineering framework that refines user inputs to model-preferred sentences.<n>Our framework achieves new state-of-the-art performance on multiple benchmarks for text-image alignment evaluation.
- Score: 15.392482488365955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since there exists a notable gap between user-provided and model-preferred prompts, generating high-quality and satisfactory images using diffusion models often requires prompt engineering to optimize user inputs. Current studies on text-to-image prompt engineering can effectively enhance the style and aesthetics of generated images. However, they often neglect the semantic alignment between generated images and user descriptions, resulting in visually appealing but content-wise unsatisfying outputs. In this work, we propose VisualPrompter, a novel training-free prompt engineering framework that refines user inputs to model-preferred sentences. In particular, VisualPrompter utilizes an automatic self-reflection module to identify the missing concepts in generated images and a target-specific prompt optimization mechanism to revise the prompts in a fine-grained manner. Extensive experiments demonstrate the effectiveness of our VisualPrompter, which achieves new state-of-the-art performance on multiple benchmarks for text-image alignment evaluation. Additionally, our framework features a plug-and-play design, making it highly adaptable to various generative models.
Related papers
- RePrompt: Reasoning-Augmented Reprompting for Text-to-Image Generation via Reinforcement Learning [88.14234949860105]
RePrompt is a novel reprompting framework that introduces explicit reasoning into the prompt enhancement process via reinforcement learning.<n>Our approach enables end-to-end training without human-annotated data.
arXiv Detail & Related papers (2025-05-23T06:44:26Z) - Self-Rewarding Large Vision-Language Models for Optimizing Prompts in Text-to-Image Generation [55.42794740244581]
We propose a novel prompt optimization framework, designed to rephrase a simple user prompt into a sophisticated prompt to a text-to-image model.<n> Specifically, we employ the large vision language models (LVLMs) as the solver to rewrite the user prompt, and concurrently, employ LVLMs as a reward model to score the aesthetics and alignment of the images generated by the optimized prompt.<n>Instead of laborious human feedback, we exploit the prior knowledge of the LVLM to provide rewards, i.e., AI feedback.
arXiv Detail & Related papers (2025-05-22T15:05:07Z) - Dynamic Prompt Optimizing for Text-to-Image Generation [63.775458908172176]
We introduce the textbfPrompt textbfAuto-textbfEditing (PAE) method to improve text-to-image generative models.
We employ an online reinforcement learning strategy to explore the weights and injection time steps of each word, leading to the dynamic fine-control prompts.
arXiv Detail & Related papers (2024-04-05T13:44:39Z) - A User-Friendly Framework for Generating Model-Preferred Prompts in
Text-to-Image Synthesis [33.71897211776133]
Well-designed prompts have demonstrated the potential to guide text-to-image models in generating amazing images.
It is challenging for novice users to achieve the desired results by manually entering prompts.
We propose a novel framework that automatically translates user-input prompts into model-preferred prompts.
arXiv Detail & Related papers (2024-02-20T06:58:49Z) - Seek for Incantations: Towards Accurate Text-to-Image Diffusion
Synthesis through Prompt Engineering [118.53208190209517]
We propose a framework to learn the proper textual descriptions for diffusion models through prompt learning.
Our method can effectively learn the prompts to improve the matches between the input text and the generated images.
arXiv Detail & Related papers (2024-01-12T03:46:29Z) - Prompt Expansion for Adaptive Text-to-Image Generation [51.67811570987088]
This paper proposes a Prompt Expansion framework that helps users generate high-quality, diverse images with less effort.
The Prompt Expansion model takes a text query as input and outputs a set of expanded text prompts.
We conduct a human evaluation study that shows that images generated through Prompt Expansion are more aesthetically pleasing and diverse than those generated by baseline methods.
arXiv Detail & Related papers (2023-12-27T21:12:21Z) - NeuroPrompts: An Adaptive Framework to Optimize Prompts for Text-to-Image Generation [4.21512101973222]
NeuroPrompts is an adaptive framework that enhances a user's prompt to improve the quality of generations produced by text-to-image models.
Our framework utilizes constrained text decoding with a pre-trained language model that has been adapted to generate prompts similar to those produced by human prompt engineers.
arXiv Detail & Related papers (2023-11-20T22:57:47Z) - PromptMagician: Interactive Prompt Engineering for Text-to-Image
Creation [16.41459454076984]
This research proposes PromptMagician, a visual analysis system that helps users explore the image results and refine the input prompts.
The backbone of our system is a prompt recommendation model that takes user prompts as input, retrieves similar prompt-image pairs from DiffusionDB, and identifies special (important and relevant) prompt keywords.
arXiv Detail & Related papers (2023-07-18T07:46:25Z) - Promptify: Text-to-Image Generation through Interactive Prompt
Exploration with Large Language Models [29.057923932305123]
We present Promptify, an interactive system that supports prompt exploration and refinement for text-to-image generative models.
Our user study shows that Promptify effectively facilitates the text-to-image workflow and outperforms an existing baseline tool widely used for text-to-image generation.
arXiv Detail & Related papers (2023-04-18T22:59:11Z) - Optimizing Prompts for Text-to-Image Generation [97.61295501273288]
Well-designed prompts can guide text-to-image models to generate amazing images.
But the performant prompts are often model-specific and misaligned with user input.
We propose prompt adaptation, a framework that automatically adapts original user input to model-preferred prompts.
arXiv Detail & Related papers (2022-12-19T16:50:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.