Mirror Descent Policy Optimisation for Robust Constrained Markov Decision Processes
- URL: http://arxiv.org/abs/2506.23165v1
- Date: Sun, 29 Jun 2025 09:55:52 GMT
- Title: Mirror Descent Policy Optimisation for Robust Constrained Markov Decision Processes
- Authors: David Bossens, Atsushi Nitanda,
- Abstract summary: This paper presents mirror descent policy optimisation for robust constrained Markov decision processes (RCMDPs)<n>We make use of policy gradient techniques to optimise both the policy (as a maximiser) and the transition kernel (as an adversarial minimiser) on the Lagrangian representing a constrained MDP.<n>Experiments confirm the benefits of mirror descent policy optimisation in constrained and unconstrained optimisation, and significant improvements are observed in robustness tests.
- Score: 8.735525389833013
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safety is an essential requirement for reinforcement learning systems. The newly emerging framework of robust constrained Markov decision processes allows learning policies that satisfy long-term constraints while providing guarantees under epistemic uncertainty. This paper presents mirror descent policy optimisation for robust constrained Markov decision processes (RCMDPs), making use of policy gradient techniques to optimise both the policy (as a maximiser) and the transition kernel (as an adversarial minimiser) on the Lagrangian representing a constrained MDP. In the oracle-based RCMDP setting, we obtain an $\mathcal{O}\left(\frac{1}{T}\right)$ convergence rate for the squared distance as a Bregman divergence, and an $\mathcal{O}\left(e^{-T}\right)$ convergence rate for entropy-regularised objectives. In the sample-based RCMDP setting, we obtain an $\tilde{\mathcal{O}}\left(\frac{1}{T^{1/3}}\right)$ convergence rate. Experiments confirm the benefits of mirror descent policy optimisation in constrained and unconstrained optimisation, and significant improvements are observed in robustness tests when compared to baseline policy optimisation algorithms.
Related papers
- Convergence and Sample Complexity of First-Order Methods for Agnostic Reinforcement Learning [66.4260157478436]
We study reinforcement learning in the policy learning setting.<n>The goal is to find a policy whose performance is competitive with the best policy in a given class of interest.
arXiv Detail & Related papers (2025-07-06T14:40:05Z) - Convergence of Policy Mirror Descent Beyond Compatible Function Approximation [66.4260157478436]
We develop theoretical PMD general policy classes where we strictly assume a weaker variational dominance and obtain convergence to the best-in-class policy.<n>Our main notion leverages a novel notion induced by the local norm induced by the occupancy- gradient measure.
arXiv Detail & Related papers (2025-02-16T08:05:46Z) - Robust Offline Reinforcement Learning with Linearly Structured $f$-Divergence Regularization [10.465789490644031]
We propose a novel framework for robust regularized Markov decision process ($d$-RRMDP)<n>For the offline RL setting, we develop a family of algorithms, Robust Regularized Pessimistic Value Iteration (R2PVI)
arXiv Detail & Related papers (2024-11-27T18:57:03Z) - Near-Optimal Policy Identification in Robust Constrained Markov Decision Processes via Epigraph Form [26.01796404477275]
This paper presents the first algorithm guaranteed to identify a near-optimal policy in a robust constrained MDP (RCMDP)<n>An optimal policy minimizes cumulative cost while satisfying constraints in the worst-case scenario across a set of environments.
arXiv Detail & Related papers (2024-08-29T06:37:16Z) - A safe exploration approach to constrained Markov decision processes [7.036452261968767]
We consider discounted infinite-horizon constrained Markov decision processes (CMDPs)<n>The goal is to find an optimal policy that maximizes the expected cumulative reward while satisfying expected cumulative constraints.<n>Motivated by the application of CMDPs in online learning for safety-critical systems, we focus on developing a model-free and emphsimulator-free algorithm.
arXiv Detail & Related papers (2023-12-01T13:16:39Z) - PARL: A Unified Framework for Policy Alignment in Reinforcement Learning from Human Feedback [106.63518036538163]
We present a novel unified bilevel optimization-based framework, textsfPARL, formulated to address the recently highlighted critical issue of policy alignment in reinforcement learning.
Our framework addressed these concerns by explicitly parameterizing the distribution of the upper alignment objective (reward design) by the lower optimal variable.
Our empirical results substantiate that the proposed textsfPARL can address the alignment concerns in RL by showing significant improvements.
arXiv Detail & Related papers (2023-08-03T18:03:44Z) - Trust-Region-Free Policy Optimization for Stochastic Policies [60.52463923712565]
We show that the trust region constraint over policies can be safely substituted by a trust-region-free constraint without compromising the underlying monotonic improvement guarantee.
We call the resulting algorithm Trust-REgion-Free Policy Optimization (TREFree) explicit as it is free of any trust region constraints.
arXiv Detail & Related papers (2023-02-15T23:10:06Z) - Bounded Robustness in Reinforcement Learning via Lexicographic
Objectives [54.00072722686121]
Policy robustness in Reinforcement Learning may not be desirable at any cost.
We study how policies can be maximally robust to arbitrary observational noise.
We propose a robustness-inducing scheme, applicable to any policy algorithm, that trades off expected policy utility for robustness.
arXiv Detail & Related papers (2022-09-30T08:53:18Z) - First-order Policy Optimization for Robust Markov Decision Process [40.2022466644885]
We consider the problem of solving robust Markov decision process (MDP)
MDP involves a set of discounted, finite state, finite action space MDPs with uncertain transition kernels.
For $(mathbfs,mathbfa)$-rectangular uncertainty sets, we establish several structural observations on the robust objective.
arXiv Detail & Related papers (2022-09-21T18:10:28Z) - Efficient Policy Iteration for Robust Markov Decision Processes via
Regularization [49.05403412954533]
Robust decision processes (MDPs) provide a framework to model decision problems where the system dynamics are changing or only partially known.
Recent work established the equivalence between texttts rectangular $L_p$ robust MDPs and regularized MDPs, and derived a regularized policy iteration scheme that enjoys the same level of efficiency as standard MDPs.
In this work, we focus on the policy improvement step and derive concrete forms for the greedy policy and the optimal robust Bellman operators.
arXiv Detail & Related papers (2022-05-28T04:05:20Z) - Stochastic first-order methods for average-reward Markov decision processes [10.023632561462712]
We study average-reward Markov decision processes (AMDPs) and develop novel first-order methods with strong theoretical guarantees for both policy optimization and policy evaluation.
By combining the policy evaluation and policy optimization parts, we establish sample complexity results for solving AMDPs under both generative and Markovian noise models.
arXiv Detail & Related papers (2022-05-11T23:02:46Z) - Understanding the Effect of Stochasticity in Policy Optimization [86.7574122154668]
We show that the preferability of optimization methods depends critically on whether exact gradients are used.
Second, to explain these findings we introduce the concept of committal rate for policy optimization.
Third, we show that in the absence of external oracle information, there is an inherent trade-off between exploiting geometry to accelerate convergence versus achieving optimality almost surely.
arXiv Detail & Related papers (2021-10-29T06:35:44Z) - Optimistic Policy Optimization is Provably Efficient in Non-stationary MDPs [113.8752163061151]
We study episodic reinforcement learning (RL) in non-stationary linear kernel Markov decision processes (MDPs)<n>We propose the underlineperiodically underlinerestarted underlineoptimistic underlinepolicy underlineoptimization algorithm (PROPO)<n>PROPO features two mechanisms: sliding-window-based policy evaluation and periodic-restart-based policy improvement.
arXiv Detail & Related papers (2021-10-18T02:33:20Z) - Policy Mirror Descent for Regularized Reinforcement Learning: A
Generalized Framework with Linear Convergence [60.20076757208645]
This paper proposes a general policy mirror descent (GPMD) algorithm for solving regularized RL.
We demonstrate that our algorithm converges linearly over an entire range learning rates, in a dimension-free fashion, to the global solution.
arXiv Detail & Related papers (2021-05-24T02:21:34Z) - Near Optimal Policy Optimization via REPS [33.992374484681704]
emphrelative entropy policy search (REPS) has demonstrated successful policy learning on a number of simulated and real-world robotic domains.
There exist no guarantees on REPS's performance when using gradient-based solvers.
We introduce a technique that uses emphgenerative access to the underlying decision process to compute parameter updates that maintain favorable convergence to the optimal regularized policy.
arXiv Detail & Related papers (2021-03-17T16:22:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.