Rotational-invariant quantum key distribution based on a quantum dot source
- URL: http://arxiv.org/abs/2506.23172v1
- Date: Sun, 29 Jun 2025 10:13:38 GMT
- Title: Rotational-invariant quantum key distribution based on a quantum dot source
- Authors: Paolo Barigelli, Francesco Sirovich, Gonzalo Carvacho, Fabio Sciarrino,
- Abstract summary: Single-photon quantum emitters offer remarkable on-demand photon emission, near-unitary indistinguishability, and low multiphoton generation.<n>Our findings suggest a viable direction for the use of rotational-invariant hybrid states in on-demand QKD protocols.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Key Distribution (QKD) is a cutting-edge field that leverages the principles of quantum mechanics to enable secure communication between parties involved. Single-photon quantum emitters offer remarkable on-demand photon emission, near-unitary indistinguishability, and low multiphoton generation, thereby enhancing the performance of QKD protocols. Standard approaches in which the polarization degree-of-freedom is exploited are limited by the precise alignment between the communicating parties. To overcome this obstacle, the Orbital Angular Momentum (OAM) of light represents a suitable candidate for encoding the information, as it allows the implementation of rotational-invariant photonic states that remove the need for a fixed physical reference frame between the communicating parties. Here, we report the implementation of an on-demand, rotational-invariant BB84-QKD protocol achieved by exploiting a bright quantum dot source, active time-to-spatial demultiplexing, and Q-plate devices with a space-variant pattern to encode hybrid photonic states. Our findings suggest a viable direction for the use of rotational-invariant hybrid states in on-demand QKD protocols, potentially enhancing security and robustness in complex operational scenarios.
Related papers
- Impact of dephased entangled states and varying measurement orientations on the reliability of cryptographic keys generated via the quantum protocol E91: A quantum simulation approach [0.0]
This work focuses on the performance of the E91 quantum key distribution protocol under the variation of two elements.<n>We use a quantum computational approach by means of the IBM's API Qiskit to simulate the optical implementation of the studied cryptographic protocol.<n>Results show that the performance of the quantum transmission is highly impacted by the product between the exciton lifetime and the quantum dot's fine structure splitting.
arXiv Detail & Related papers (2024-12-04T22:46:45Z) - Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Source-independent quantum secret sharing with entangled photon pair networks [15.3505990843415]
We present an efficient source-independent QSS protocol utilizing entangled photon pairs in quantum networks.
Our protocol has great performance and technical advantages in future quantum networks.
arXiv Detail & Related papers (2024-07-23T13:24:28Z) - A robust approach for time-bin encoded photonic quantum information protocols [0.0]
Quantum states encoded in the time-bin degree of freedom of photons represent a fundamental resource for quantum information protocols.
Traditional methods for generating and measuring time-bin encoded quantum states face severe challenges due to optical instabilities, complex setups, and timing resolution requirements.
We propose a robust and scalable protocol to generate and measure high-dimensional time-bin quantum states in a single spatial mode.
arXiv Detail & Related papers (2024-04-24T18:00:54Z) - Controlling the Photon Number Coherence of Solid-state Quantum Light
Sources for Quantum Cryptography [0.0]
Quantum communication networks rely on quantum cryptographic protocols including quantum key distribution (QKD) using single photons.
A critical element regarding the security of QKD protocols is the photon number coherence (PNC)
We exploit two-photon excitation of a quantum dot combined with a stimulation pulse to generate on-demand single photons with high purity and indistinguishability.
arXiv Detail & Related papers (2023-05-31T16:46:00Z) - Asynchronous measurement-device-independent quantum key distribution
with hybrid source [6.7097515257155225]
We propose an AMDI-QKD protocol with a nonclassical light source.
We show that our proposed hybrid source protocol significantly enhances the key rate of the AMDI-QKD protocol.
arXiv Detail & Related papers (2023-04-10T13:18:48Z) - Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron
Nitride [48.97025221755422]
We demonstrate a room temperature, discrete-variable quantum key distribution system using a bright single photon source in hexagonal-boron nitride.
We have generated keys with one million bits length, and demonstrated a secret key of approximately 70,000 bits, at a quantum bit error rate of 6%.
Our work demonstrates the first proof of concept finite-key BB84 QKD system realised with hBN defects.
arXiv Detail & Related papers (2023-02-13T09:38:51Z) - Protecting the quantum interference of cat states by phase-space
compression [45.82374977939355]
Cat states with their unique phase-space interference properties are ideal candidates for understanding quantum mechanics.
They are highly susceptible to photon loss, which inevitably diminishes their quantum non-Gaussian features.
Here, we protect these non-Gaussian features by compressing the phase-space distribution of a cat state.
arXiv Detail & Related papers (2022-12-02T16:06:40Z) - Semi-quantum key distribution with single photons in both polarization
and spatial-mode degrees of freedom [0.0]
The proposed SQKD protocol only needs single photons in both polarization and spatial-mode degrees of freedom as quantum resource.
It can resist Eve's active attacks, such as the intercept-resend attack, the measure-resend attack, the Trojan horse attack and the entangle-measure attack.
arXiv Detail & Related papers (2022-05-13T00:51:11Z) - Efficient room-temperature molecular single-photon sources for quantum
key distribution [51.56795970800138]
Quantum Key Distribution (QKD) allows the distribution of cryptographic keys between multiple users in an information-theoretic secure way.
We introduce and demonstrate a proof-of-concept QKD system exploiting a molecule-based single-photon source operating at room temperature and emitting at 785nm.
arXiv Detail & Related papers (2022-02-25T11:52:10Z) - Fibre polarization state compensation in entanglement-based quantum key
distribution [62.997667081978825]
Quantum Key Distribution (QKD) using polarisation encoding can be hard to implement over deployed telecom fibres.
We show a technique for dynamically compensating fibre-induced alteration in a QKD system over deployed fibre.
arXiv Detail & Related papers (2021-07-16T00:53:48Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.