TVG-SLAM: Robust Gaussian Splatting SLAM with Tri-view Geometric Constraints
- URL: http://arxiv.org/abs/2506.23207v1
- Date: Sun, 29 Jun 2025 12:31:05 GMT
- Title: TVG-SLAM: Robust Gaussian Splatting SLAM with Tri-view Geometric Constraints
- Authors: Zhen Tan, Xieyuanli Chen, Lei Feng, Yangbing Ge, Shuaifeng Zhi, Jiaxiong Liu, Dewen Hu,
- Abstract summary: TVG-SLAM is a robust RGB-only 3DGS SLAM system that leverages a novel tri-view geometry paradigm to ensure consistent tracking and high-quality mapping.<n>Our method improves tracking robustness, reducing the average Absolute Trajectory Error (ATE) by 69.0% while achieving state-of-the-art rendering quality.
- Score: 22.121665995381324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in 3D Gaussian Splatting (3DGS) have enabled RGB-only SLAM systems to achieve high-fidelity scene representation. However, the heavy reliance of existing systems on photometric rendering loss for camera tracking undermines their robustness, especially in unbounded outdoor environments with severe viewpoint and illumination changes. To address these challenges, we propose TVG-SLAM, a robust RGB-only 3DGS SLAM system that leverages a novel tri-view geometry paradigm to ensure consistent tracking and high-quality mapping. We introduce a dense tri-view matching module that aggregates reliable pairwise correspondences into consistent tri-view matches, forming robust geometric constraints across frames. For tracking, we propose Hybrid Geometric Constraints, which leverage tri-view matches to construct complementary geometric cues alongside photometric loss, ensuring accurate and stable pose estimation even under drastic viewpoint shifts and lighting variations. For mapping, we propose a new probabilistic initialization strategy that encodes geometric uncertainty from tri-view correspondences into newly initialized Gaussians. Additionally, we design a Dynamic Attenuation of Rendering Trust mechanism to mitigate tracking drift caused by mapping latency. Experiments on multiple public outdoor datasets show that our TVG-SLAM outperforms prior RGB-only 3DGS-based SLAM systems. Notably, in the most challenging dataset, our method improves tracking robustness, reducing the average Absolute Trajectory Error (ATE) by 69.0\% while achieving state-of-the-art rendering quality. The implementation of our method will be released as open-source.
Related papers
- Pseudo Depth Meets Gaussian: A Feed-forward RGB SLAM Baseline [64.42938561167402]
We propose an online 3D reconstruction method using 3D Gaussian-based SLAM, combined with a feed-forward recurrent prediction module.<n>This approach replaces slow test-time optimization with fast network inference, significantly improving tracking speed.<n>Our method achieves performance on par with the state-of-the-art SplaTAM, while reducing tracking time by more than 90%.
arXiv Detail & Related papers (2025-08-06T16:16:58Z) - Outdoor Monocular SLAM with Global Scale-Consistent 3D Gaussian Pointmaps [13.325879149065008]
3D Gaussian Splatting (3DGS) has become a popular solution in SLAM due to its high-fidelity synthesis and real-time novel view performance.<n>Previous 3DGS SLAM methods employ a differentiable rendering pipeline for tracking, lack geometric priors in outdoor scenes.<n>We propose a robust RGB-only outdoor 3DGS SLAM method: S3PO-GS. Technically, we establish a self-consistent tracking module anchored in the 3DGS pointmap, which avoids cumulative scale drift and achieves more precise and robust tracking with fewer iterations.
arXiv Detail & Related papers (2025-07-04T17:56:43Z) - Generalizable and Relightable Gaussian Splatting for Human Novel View Synthesis [49.67420486373202]
GRGS is a generalizable and relightable 3D Gaussian framework for high-fidelity human novel view synthesis under diverse lighting conditions.<n>We introduce a Lighting-aware Geometry Refinement (LGR) module trained on synthetically relit data to predict accurate depth and surface normals.
arXiv Detail & Related papers (2025-05-27T17:59:47Z) - Diffusion-Guided Gaussian Splatting for Large-Scale Unconstrained 3D Reconstruction and Novel View Synthesis [22.767866875051013]
We propose GS-Diff, a novel 3DGS framework guided by a multi-view diffusion model to address limitations of current methods.<n>By generating pseudo-observations conditioned on multi-view inputs, our method transforms under-constrained 3D reconstruction problems into well-posed ones.<n> Experiments on four benchmarks demonstrate that GS-Diff consistently outperforms state-of-the-art baselines by significant margins.
arXiv Detail & Related papers (2025-04-02T17:59:46Z) - EVolSplat: Efficient Volume-based Gaussian Splatting for Urban View Synthesis [61.1662426227688]
Existing NeRF and 3DGS-based methods show promising results in achieving photorealistic renderings but require slow, per-scene optimization.<n>We introduce EVolSplat, an efficient 3D Gaussian Splatting model for urban scenes that works in a feed-forward manner.
arXiv Detail & Related papers (2025-03-26T02:47:27Z) - SplatMAP: Online Dense Monocular SLAM with 3D Gaussian Splatting [7.2305711760924085]
We propose a framework integrating dense SLAM with 3DGS for real-time, high-fidelity dense reconstruction.<n>Our approach introduces SLAM-Informed Adaptive Densification, which dynamically updates and densifies the Gaussian model by leveraging dense point clouds from SLAM.<n>Experiments on the Replica and TUM-RGBD datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2025-01-13T02:28:13Z) - GeoSplatting: Towards Geometry Guided Gaussian Splatting for Physically-based Inverse Rendering [69.67264955234494]
GeoSplatting is a novel approach that augments 3DGS with explicit geometry guidance for precise light transport modeling.<n>By differentiably constructing a surface-grounded 3DGS from an optimizable mesh, our approach leverages well-defined mesh normals and the opaque mesh surface.<n>This enhancement ensures precise material decomposition while preserving the efficiency and high-quality rendering capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-31T17:57:07Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - Gaussian Splatting SLAM [16.3858380078553]
We present the first application of 3D Gaussian Splatting in monocular SLAM.
Our method runs live at 3fps, unifying the required representation for accurate tracking, mapping, and high-quality rendering.
Several innovations are required to continuously reconstruct 3D scenes with high fidelity from a live camera.
arXiv Detail & Related papers (2023-12-11T18:19:04Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
We propose GS-IR, a novel inverse rendering approach based on 3D Gaussian Splatting (GS)
We extend GS, a top-performance representation for novel view synthesis, to estimate scene geometry, surface material, and environment illumination from multi-view images captured under unknown lighting conditions.
The flexible and expressive GS representation allows us to achieve fast and compact geometry reconstruction, photorealistic novel view synthesis, and effective physically-based rendering.
arXiv Detail & Related papers (2023-11-26T02:35:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.