論文の概要: Multi-Source COVID-19 Detection via Variance Risk Extrapolation
- arxiv url: http://arxiv.org/abs/2506.23208v1
- Date: Sun, 29 Jun 2025 12:34:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:53.775122
- Title: Multi-Source COVID-19 Detection via Variance Risk Extrapolation
- Title(参考訳): 可変リスク外挿による複数ソースのCOVID-19検出
- Authors: Runtian Yuan, Qingqiu Li, Junlin Hou, Jilan Xu, Yuejie Zhang, Rui Feng, Hao Chen,
- Abstract要約: マルチソースの新型コロナウイルス検出チャレンジは、胸部CTスキャンを4つの病院や医療センターから収集されたデータから、新型コロナウイルスと非新型コロナウイルスのカテゴリーに分類することを目的としている。
このタスクにおける大きな課題は、イメージングプロトコル、スキャナー、および組織全体にわたる患者の人口の変化によって引き起こされるドメインシフトである。
我々は,モデルのクロスドメイン一般化を促進するために,VREx(Variance Risk Extrapolation)をトレーニングプロセスに組み込んだ。
本手法は, 検証セット上の4つの情報源の平均マクロF1スコアが0.96であり, 強い一般化が示されている。
- 参考スコア(独自算出の注目度): 19.844531606142496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present our solution for the Multi-Source COVID-19 Detection Challenge, which aims to classify chest CT scans into COVID and Non-COVID categories across data collected from four distinct hospitals and medical centers. A major challenge in this task lies in the domain shift caused by variations in imaging protocols, scanners, and patient populations across institutions. To enhance the cross-domain generalization of our model, we incorporate Variance Risk Extrapolation (VREx) into the training process. VREx encourages the model to maintain consistent performance across multiple source domains by explicitly minimizing the variance of empirical risks across environments. This regularization strategy reduces overfitting to center-specific features and promotes learning of domain-invariant representations. We further apply Mixup data augmentation to improve generalization and robustness. Mixup interpolates both the inputs and labels of randomly selected pairs of training samples, encouraging the model to behave linearly between examples and enhancing its resilience to noise and limited data. Our method achieves an average macro F1 score of 0.96 across the four sources on the validation set, demonstrating strong generalization.
- Abstract(参考訳): 我々は,胸部CTを4つの病院や医療センターから収集したデータから,新型コロナウイルスと非新型コロナウイルスのカテゴリに分類することを目的としたマルチソース新型コロナウイルス検出チャレンジの解決策を提案する。
このタスクにおける大きな課題は、イメージングプロトコル、スキャナー、および組織全体にわたる患者の人口の変化によって引き起こされるドメインシフトである。
モデルのクロスドメイン一般化を強化するため、トレーニングプロセスに可変リスク外挿法(VREx)を組み込んだ。
VRExは、環境間の経験的リスクの分散を明示的に最小化することによって、複数のソースドメイン間での一貫性のあるパフォーマンスを維持することをモデルに推奨する。
この正規化戦略は、オーバーフィッティングをセンター固有の特徴に減らし、ドメイン不変表現の学習を促進する。
さらに、Mixupデータ拡張を適用して、一般化とロバスト性を改善する。
ミックスアップはランダムに選択されたトレーニングサンプルの入力とラベルの両方を補間し、サンプル間で線形に振る舞うことを奨励し、ノイズや限られたデータに対するレジリエンスを高める。
本手法は, 検証セット上の4つの情報源の平均マクロF1スコアが0.96であり, 強い一般化が示されている。
関連論文リスト
- CLIP Meets Diffusion: A Synergistic Approach to Anomaly Detection [54.85000884785013]
異常検出は、異常の定義の曖昧さ、異常型の多様性、トレーニングデータの不足による複雑な問題である。
識別的基盤モデルと生成的基礎モデルの両方を活用するCLIPfusionを提案する。
本手法は, 異常検出の多面的課題に対処する上で, マルチモーダル・マルチモデル融合の有効性を裏付けるものである。
論文 参考訳(メタデータ) (2025-06-13T13:30:15Z) - Multi-Dataset Multi-Task Learning for COVID-19 Prognosis [25.371798627482065]
胸部X線による新型コロナウイルスの予後を予測できる新しいマルチデータセット・マルチタスク・トレーニング・フレームワークを提案する。
本フレームワークは,重大度スコアを評価することによって,重大度グループを分類するモデルの能力を高めることを仮定する。
論文 参考訳(メタデータ) (2024-05-22T15:57:44Z) - FORESEE: Multimodal and Multi-view Representation Learning for Robust Prediction of Cancer Survival [3.4686401890974197]
マルチモーダル情報のマイニングにより患者生存を確実に予測する新しいエンドツーエンドフレームワークFOESEEを提案する。
クロスフュージョントランスフォーマーは、細胞レベル、組織レベル、腫瘍の不均一度レベルの特徴を効果的に利用し、予後を相関させる。
ハイブリットアテンションエンコーダ(HAE)は、コンテキストアテンションモジュールを用いて、コンテキスト関係の特徴を取得する。
また、モダリティ内の損失情報を再構成する非対称マスク型3重マスク型オートエンコーダを提案する。
論文 参考訳(メタデータ) (2024-05-13T12:39:08Z) - UniChest: Conquer-and-Divide Pre-training for Multi-Source Chest X-Ray Classification [36.94690613164942]
UniChestはConquer-and-Divide事前トレーニングフレームワークで、複数のCXRソースのコラボレーション利益をフル活用することを目的としている。
我々は、ChestX-ray14、CheXpert、Vindr-CXR、深セン、Open-I、SIIM-ACR Pneumothoraxなどの多くのベンチマークで徹底的な実験を行った。
論文 参考訳(メタデータ) (2023-12-18T09:16:48Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - A Novel Cross-Perturbation for Single Domain Generalization [54.612933105967606]
単一ドメインの一般化は、モデルが単一のソースドメインでトレーニングされたときに未知のドメインに一般化する能力を高めることを目的としている。
トレーニングデータの限られた多様性は、ドメイン不変の特徴の学習を妨げ、結果として一般化性能を損なう。
トレーニングデータの多様性を高めるために,CPerbを提案する。
論文 参考訳(メタデータ) (2023-08-02T03:16:12Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Rotation Invariance and Extensive Data Augmentation: a strategy for the
Mitosis Domain Generalization (MIDOG) Challenge [1.52292571922932]
我々は,MIDOG 2021コンペティションに参加するための戦略を提示する。
このコンペティションの目的は、目に見えないターゲットスキャナーで取得した画像に対する解の一般化を評価することである。
本稿では,最先端のディープラーニング手法の組み合わせに基づく解を提案する。
論文 参考訳(メタデータ) (2021-09-02T10:09:02Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - On the Importance of Diversity in Re-Sampling for Imbalanced Data and
Rare Events in Mortality Risk Models [0.0]
外科的アウトカムリスクツール(SORT)は、英国の主要な選択的内科手術の期間を通して死亡リスクを予測するために開発されたツールの1つです。
本研究では,データセット内のクラス不均衡に対処することにより,SORT予測モデルの拡張を行う。
提案手法は,共通再サンプリング技術上での多様性に基づく選択の応用について検討する。
論文 参考訳(メタデータ) (2020-12-15T09:45:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。