PixelBoost: Leveraging Brownian Motion for Realistic-Image Super-Resolution
- URL: http://arxiv.org/abs/2506.23254v1
- Date: Sun, 29 Jun 2025 14:22:38 GMT
- Title: PixelBoost: Leveraging Brownian Motion for Realistic-Image Super-Resolution
- Authors: Aradhana Mishra, Bumshik Lee,
- Abstract summary: Diffusion-model-based image super-resolution techniques often face a trade-off between realistic image generation and computational efficiency.<n>We introduce a novel diffusion model named PixelBoost that underscores the significance of embracing the nature of Brownian motion.<n>Our proposed model demonstrates superior objective results in terms of learned perceptual image patch similarity (LPIPS), order error (LOE), peak signal-to-noise ratio(PSNR), structural similarity index measure (SSIM) as well as visual quality.
- Score: 8.041659727964305
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion-model-based image super-resolution techniques often face a trade-off between realistic image generation and computational efficiency. This issue is exacerbated when inference times by decreasing sampling steps, resulting in less realistic and hazy images. To overcome this challenge, we introduce a novel diffusion model named PixelBoost that underscores the significance of embracing the stochastic nature of Brownian motion in advancing image super-resolution, resulting in a high degree of realism, particularly focusing on texture and edge definitions. By integrating controlled stochasticity into the training regimen, our proposed model avoids convergence to local optima, effectively capturing and reproducing the inherent uncertainty of image textures and patterns. Our proposed model demonstrates superior objective results in terms of learned perceptual image patch similarity (LPIPS), lightness order error (LOE), peak signal-to-noise ratio(PSNR), structural similarity index measure (SSIM), as well as visual quality. To determine the edge enhancement, we evaluated the gradient magnitude and pixel value, and our proposed model exhibited a better edge reconstruction capability. Additionally, our model demonstrates adaptive learning capabilities by effectively adjusting to Brownian noise patterns and introduces a sigmoidal noise sequencing method that simplifies training, resulting in faster inference speeds.
Related papers
- DPEC: Dual-Path Error Compensation Method for Enhanced Low-Light Image Clarity [2.8161423494191222]
We propose the Dual-Path Error Compensation (DPEC) method to improve image quality under low-light conditions.<n>DPEC incorporates precise pixel-level error estimation to capture subtle differences and an independent denoising mechanism to prevent noise amplification.<n> Comprehensive quantitative and qualitative experimental results demonstrate that our algorithm significantly outperforms state-of-the-art methods in low-light image enhancement.
arXiv Detail & Related papers (2024-06-28T08:21:49Z) - BAGS: Blur Agnostic Gaussian Splatting through Multi-Scale Kernel Modeling [32.493592776662005]
We analyze the robustness of Gaussian-Splatting-based methods against various image blur.
We propose Blur Agnostic Gaussian Splatting (BAGS) to address this issue.
BAGS introduces additional 2D modeling capacities such that a 3D-consistent and high quality scene can be reconstructed despite image-wise blur.
arXiv Detail & Related papers (2024-03-07T22:21:08Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
We propose a diffusion model-based super-resolution method called ACDMSR.
Our method adapts the standard diffusion model to perform super-resolution through a deterministic iterative denoising process.
Our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
arXiv Detail & Related papers (2023-07-03T06:49:04Z) - Simultaneous Image-to-Zero and Zero-to-Noise: Diffusion Models with Analytical Image Attenuation [53.04220377034574]
We propose incorporating an analytical image attenuation process into the forward diffusion process for high-quality (un)conditioned image generation.<n>Our method represents the forward image-to-noise mapping as simultaneous textitimage-to-zero mapping and textitzero-to-noise mapping.<n>We have conducted experiments on unconditioned image generation, textite.g., CIFAR-10 and CelebA-HQ-256, and image-conditioned downstream tasks such as super-resolution, saliency detection, edge detection, and image inpainting.
arXiv Detail & Related papers (2023-06-23T18:08:00Z) - GAN-based Image Compression with Improved RDO Process [20.00340507091567]
We present a novel GAN-based image compression approach with improved rate-distortion optimization process.
To achieve this, we utilize the DISTS and MS-SSIM metrics to measure perceptual degeneration in color, texture, and structure.
The proposed method outperforms the existing GAN-based methods and the state-of-the-art hybrid (i.e., VVC)
arXiv Detail & Related papers (2023-06-18T03:21:11Z) - Parallel Inversion of Neural Radiance Fields for Robust Pose Estimation [26.987638406423123]
We present a parallelized optimization method based on fast Neural Radiance Fields (NeRF) for estimating 6-DoF target poses.
We can predict the translation and rotation of the camera by minimizing the residual between pixels rendered from a fast NeRF model and pixels in the observed image.
Experiments demonstrate that our method can achieve improved generalization and robustness on both synthetic and real-world benchmarks.
arXiv Detail & Related papers (2022-10-18T19:09:58Z) - Perception-Distortion Balanced ADMM Optimization for Single-Image
Super-Resolution [29.19388490351459]
We propose a novel super-resolution model with a low-frequency constraint (LFc-SR)
We introduce an ADMM-based alternating optimization method for the non-trivial learning of the constrained model.
Experiments showed that our method, without cumbersome post-processing procedures, achieved the state-of-the-art performance.
arXiv Detail & Related papers (2022-08-05T05:37:55Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z) - Designing a Practical Degradation Model for Deep Blind Image
Super-Resolution [134.9023380383406]
Single image super-resolution (SISR) methods would not perform well if the assumed degradation model deviates from those in real images.
This paper proposes to design a more complex but practical degradation model that consists of randomly shuffled blur, downsampling and noise degradations.
arXiv Detail & Related papers (2021-03-25T17:40:53Z) - Learning Spatial and Spatio-Temporal Pixel Aggregations for Image and
Video Denoising [104.59305271099967]
We present a pixel aggregation network and learn the pixel sampling and averaging strategies for image denoising.
We develop a pixel aggregation network for video denoising to sample pixels across the spatial-temporal space.
Our method is able to solve the misalignment issues caused by large motion in dynamic scenes.
arXiv Detail & Related papers (2021-01-26T13:00:46Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.