Information Loss in LLMs' Multilingual Translation: The Role of Training Data, Language Proximity, and Language Family
- URL: http://arxiv.org/abs/2506.23340v1
- Date: Sun, 29 Jun 2025 17:21:05 GMT
- Title: Information Loss in LLMs' Multilingual Translation: The Role of Training Data, Language Proximity, and Language Family
- Authors: Yumeng Lin, Xufeng Duan, David Haslett, Yige Chen, Zhenguang G. Cai,
- Abstract summary: This study systematically investigates how training data, language proximity, and language family affect information loss in multilingual translation.<n>We evaluate two large language models, GPT-4 and Llama 2, by performing round-trip translations.
- Score: 0.9422186097220215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models have achieved impressive progress in multilingual translation, yet they continue to face challenges with certain language pairs-particularly those with limited training data or significant linguistic divergence from English. This study systematically investigates how training data, language proximity, and language family affect information loss in multilingual translation. We evaluate two large language models, GPT-4 and Llama 2, by performing round-trip translations. Translation quality was assessed using BLEU scores and BERT similarity metrics. Our results reveal a robust interaction between training data size and language distance: while abundant training data can mitigate the effects of linguistic divergence, languages structurally closer to English consistently yield higher translation quality in low-resource conditions. Among various distance metrics, orthographic, phylogenetic, syntactic, and geographical distances emerge as strong predictors of translation performance. Language family also exerts an independent influence. These findings contribute to a deeper understanding of the linguistic constraints shaping multilingual translation in large language models, emphasizing that translation quality is shaped not only by data volume but also by structural and typological relationships between languages.
Related papers
- Cross-Linguistic Transfer in Multilingual NLP: The Role of Language Families and Morphology [0.0]
Cross-lingual transfer has become a crucial aspect of multilingual NLP.<n>This paper investigates cross-linguistic transfer through the lens of language families and morphology.
arXiv Detail & Related papers (2025-05-20T04:19:34Z) - A Comparative Study of Translation Bias and Accuracy in Multilingual Large Language Models for Cross-Language Claim Verification [1.566834021297545]
This study systematically evaluates translation bias and the effectiveness of Large Language Models for cross-lingual claim verification.
We investigate two distinct translation methods: pre-translation and self-translation.
Our findings reveal that low-resource languages exhibit significantly lower accuracy in direct inference due to underrepresentation.
arXiv Detail & Related papers (2024-10-14T09:02:42Z) - Could We Have Had Better Multilingual LLMs If English Was Not the Central Language? [4.655168524016426]
Large Language Models (LLMs) demonstrate strong machine translation capabilities on languages they are trained on.
Our study delves into Llama2's translation capabilities.
Our experiments show that the 7B Llama2 model yields above 10 BLEU when translating into all languages it has seen.
arXiv Detail & Related papers (2024-02-21T16:32:38Z) - Towards a Deep Understanding of Multilingual End-to-End Speech
Translation [52.26739715012842]
We analyze representations learnt in a multilingual end-to-end speech translation model trained over 22 languages.
We derive three major findings from our analysis.
arXiv Detail & Related papers (2023-10-31T13:50:55Z) - GradSim: Gradient-Based Language Grouping for Effective Multilingual
Training [13.730907708289331]
We propose GradSim, a language grouping method based on gradient similarity.
Our experiments on three diverse multilingual benchmark datasets show that it leads to the largest performance gains.
Besides linguistic features, the topics of the datasets play an important role for language grouping.
arXiv Detail & Related papers (2023-10-23T18:13:37Z) - Quantifying the Dialect Gap and its Correlates Across Languages [69.18461982439031]
This work will lay the foundation for furthering the field of dialectal NLP by laying out evident disparities and identifying possible pathways for addressing them through mindful data collection.
arXiv Detail & Related papers (2023-10-23T17:42:01Z) - Multi-lingual and Multi-cultural Figurative Language Understanding [69.47641938200817]
Figurative language permeates human communication, but is relatively understudied in NLP.
We create a dataset for seven diverse languages associated with a variety of cultures: Hindi, Indonesian, Javanese, Kannada, Sundanese, Swahili and Yoruba.
Our dataset reveals that each language relies on cultural and regional concepts for figurative expressions, with the highest overlap between languages originating from the same region.
All languages exhibit a significant deficiency compared to English, with variations in performance reflecting the availability of pre-training and fine-tuning data.
arXiv Detail & Related papers (2023-05-25T15:30:31Z) - Language Contamination Explains the Cross-lingual Capabilities of
English Pretrained Models [79.38278330678965]
We find that common English pretraining corpora contain significant amounts of non-English text.
This leads to hundreds of millions of foreign language tokens in large-scale datasets.
We then demonstrate that even these small percentages of non-English data facilitate cross-lingual transfer for models trained on them.
arXiv Detail & Related papers (2022-04-17T23:56:54Z) - A Massively Multilingual Analysis of Cross-linguality in Shared
Embedding Space [61.18554842370824]
In cross-lingual language models, representations for many different languages live in the same space.
We compute a task-based measure of cross-lingual alignment in the form of bitext retrieval performance.
We examine a range of linguistic, quasi-linguistic, and training-related features as potential predictors of these alignment metrics.
arXiv Detail & Related papers (2021-09-13T21:05:37Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
We use singular vector canonical correlation analysis to study what kind of information is induced from each source.
We observe that our representations embed typology and strengthen correlations with language relationships.
We then take advantage of our multi-view language vector space for multilingual machine translation, where we achieve competitive overall translation accuracy.
arXiv Detail & Related papers (2020-04-30T16:25:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.