Contrastive Learning with Diffusion Features for Weakly Supervised Medical Image Segmentation
- URL: http://arxiv.org/abs/2506.23460v1
- Date: Mon, 30 Jun 2025 01:43:50 GMT
- Title: Contrastive Learning with Diffusion Features for Weakly Supervised Medical Image Segmentation
- Authors: Dewen Zeng, Xinrong Hu, Yu-Jen Chen, Yawen Wu, Xiaowei Xu, Yiyu Shi,
- Abstract summary: Conditional diffusion model (CDM) has been used as an alternative for generating segmentation masks.<n>We introduce Contrastive Learning with Diffusion Features (CLDF) to train a pixel decoder to map the diffusion features from a frozen CDM to a low-dimensional embedding space for segmentation.
- Score: 12.530950480385554
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weakly supervised semantic segmentation (WSSS) methods using class labels often rely on class activation maps (CAMs) to localize objects. However, traditional CAM-based methods struggle with partial activations and imprecise object boundaries due to optimization discrepancies between classification and segmentation. Recently, the conditional diffusion model (CDM) has been used as an alternative for generating segmentation masks in WSSS, leveraging its strong image generation capabilities tailored to specific class distributions. By modifying or perturbing the condition during diffusion sampling, the related objects can be highlighted in the generated images. Yet, the saliency maps generated by CDMs are prone to noise from background alterations during reverse diffusion. To alleviate the problem, we introduce Contrastive Learning with Diffusion Features (CLDF), a novel method that uses contrastive learning to train a pixel decoder to map the diffusion features from a frozen CDM to a low-dimensional embedding space for segmentation. Specifically, we integrate gradient maps generated from CDM external classifier with CAMs to identify foreground and background pixels with fewer false positives/negatives for contrastive learning, enabling robust pixel embedding learning. Experimental results on four segmentation tasks from two public medical datasets demonstrate that our method significantly outperforms existing baselines.
Related papers
- PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
We propose PathSegDiff, a novel approach for histopathology image segmentation that leverages Latent Diffusion Models (LDMs) as pre-trained featured extractors.<n>Our method utilizes a pathology-specific LDM, guided by a self-supervised encoder, to extract rich semantic information from H&E stained histopathology images.<n>Our experiments demonstrate significant improvements over traditional methods on the BCSS and GlaS datasets.
arXiv Detail & Related papers (2025-04-09T14:58:21Z) - Prototype-Based Image Prompting for Weakly Supervised Histopathological Image Segmentation [13.640757848445835]
Weakly supervised image segmentation with image-level labels has drawn attention due to the high cost of pixel-level annotations.<n>Traditional methods using Class Activation Maps (CAMs) often highlight only the most discriminative regions.
arXiv Detail & Related papers (2025-03-15T09:55:31Z) - RecDiffusion: Rectangling for Image Stitching with Diffusion Models [53.824503710254206]
We introduce a novel diffusion-based learning framework, textbfRecDiffusion, for image stitching rectangling.
This framework combines Motion Diffusion Models (MDM) to generate motion fields, effectively transitioning from the stitched image's irregular borders to a geometrically corrected intermediary.
arXiv Detail & Related papers (2024-03-28T06:22:45Z) - EmerDiff: Emerging Pixel-level Semantic Knowledge in Diffusion Models [52.3015009878545]
We develop an image segmentor capable of generating fine-grained segmentation maps without any additional training.
Our framework identifies semantic correspondences between image pixels and spatial locations of low-dimensional feature maps.
In extensive experiments, the produced segmentation maps are demonstrated to be well delineated and capture detailed parts of the images.
arXiv Detail & Related papers (2024-01-22T07:34:06Z) - SDDM: Score-Decomposed Diffusion Models on Manifolds for Unpaired
Image-to-Image Translation [96.11061713135385]
This work presents a new score-decomposed diffusion model to explicitly optimize the tangled distributions during image generation.
We equalize the refinement parts of the score function and energy guidance, which permits multi-objective optimization on the manifold.
SDDM outperforms existing SBDM-based methods with much fewer diffusion steps on several I2I benchmarks.
arXiv Detail & Related papers (2023-08-04T06:21:57Z) - Conditional Diffusion Models for Weakly Supervised Medical Image
Segmentation [18.956306942099097]
Conditional diffusion models (CDM) is capable of generating images subject to specific distributions.
We utilize category-aware semantic information underlied in CDM to get the prediction mask of the target object.
Our method outperforms state-of-the-art CAM and diffusion model methods on two public medical image segmentation datasets.
arXiv Detail & Related papers (2023-06-06T17:29:26Z) - Stochastic Segmentation with Conditional Categorical Diffusion Models [3.8168879948759953]
We propose a conditional categorical diffusion model (CCDM) for semantic segmentation based on Denoising Diffusion Probabilistic Models.
Our results show that CCDM achieves state-of-the-art performance on LIDC, and outperforms established baselines on the classical segmentation dataset Cityscapes.
arXiv Detail & Related papers (2023-03-15T19:16:47Z) - Leveraging Uncertainty for Deep Interpretable Classification and
Weakly-Supervised Segmentation of Histology Images [25.429124017422385]
Deep weakly supervised methods allow image classification and ROI segmentation for interpretability.
These methods lack mechanisms for modeling explicitly non-discriminative regions which raises false-positive rates.
We propose novel regularization terms, which enable the model to seek both non-discriminative and discriminative regions.
arXiv Detail & Related papers (2022-05-12T02:18:23Z) - Unsupervised Domain Adaptation with Contrastive Learning for OCT
Segmentation [49.59567529191423]
We propose a novel semi-supervised learning framework for segmentation of volumetric images from new unlabeled domains.
We jointly use supervised and contrastive learning, also introducing a contrastive pairing scheme that leverages similarity between nearby slices in 3D.
arXiv Detail & Related papers (2022-03-07T19:02:26Z) - Margin Preserving Self-paced Contrastive Learning Towards Domain
Adaptation for Medical Image Segmentation [51.93711960601973]
We propose a novel margin preserving self-paced contrastive Learning model for cross-modal medical image segmentation.
With the guidance of progressively refined semantic prototypes, a novel margin preserving contrastive loss is proposed to boost the discriminability of embedded representation space.
Experiments on cross-modal cardiac segmentation tasks demonstrate that MPSCL significantly improves semantic segmentation performance.
arXiv Detail & Related papers (2021-03-15T15:23:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.