Leveraging Uncertainty for Deep Interpretable Classification and
Weakly-Supervised Segmentation of Histology Images
- URL: http://arxiv.org/abs/2205.05841v1
- Date: Thu, 12 May 2022 02:18:23 GMT
- Title: Leveraging Uncertainty for Deep Interpretable Classification and
Weakly-Supervised Segmentation of Histology Images
- Authors: Soufiane Belharbi, J\'er\^ome Rony, Jose Dolz, Ismail Ben Ayed, Luke
McCaffrey, Eric Granger
- Abstract summary: Deep weakly supervised methods allow image classification and ROI segmentation for interpretability.
These methods lack mechanisms for modeling explicitly non-discriminative regions which raises false-positive rates.
We propose novel regularization terms, which enable the model to seek both non-discriminative and discriminative regions.
- Score: 25.429124017422385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trained using only image class label, deep weakly supervised methods allow
image classification and ROI segmentation for interpretability. Despite their
success on natural images, they face several challenges over histology data
where ROI are visually similar to background making models vulnerable to high
pixel-wise false positives. These methods lack mechanisms for modeling
explicitly non-discriminative regions which raises false-positive rates. We
propose novel regularization terms, which enable the model to seek both
non-discriminative and discriminative regions, while discouraging unbalanced
segmentations and using only image class label. Our method is composed of two
networks: a localizer that yields segmentation mask, followed by a classifier.
The training loss pushes the localizer to build a segmentation mask that holds
most discrimiantive regions while simultaneously modeling background regions.
Comprehensive experiments over two histology datasets showed the merits of our
method in reducing false positives and accurately segmenting ROI.
Related papers
- Pixel-Level Domain Adaptation: A New Perspective for Enhancing Weakly Supervised Semantic Segmentation [13.948425538725138]
We propose a Pixel-Level Domain Adaptation (PLDA) method to encourage the model in learning pixel-wise domain-invariant features.
We experimentally demonstrate the effectiveness of our approach under a wide range of settings.
arXiv Detail & Related papers (2024-08-04T14:14:54Z) - EmerDiff: Emerging Pixel-level Semantic Knowledge in Diffusion Models [52.3015009878545]
We develop an image segmentor capable of generating fine-grained segmentation maps without any additional training.
Our framework identifies semantic correspondences between image pixels and spatial locations of low-dimensional feature maps.
In extensive experiments, the produced segmentation maps are demonstrated to be well delineated and capture detailed parts of the images.
arXiv Detail & Related papers (2024-01-22T07:34:06Z) - Adaptive Face Recognition Using Adversarial Information Network [57.29464116557734]
Face recognition models often degenerate when training data are different from testing data.
We propose a novel adversarial information network (AIN) to address it.
arXiv Detail & Related papers (2023-05-23T02:14:11Z) - Weakly supervised segmentation with point annotations for histopathology
images via contrast-based variational model [7.021021047695508]
We propose a contrast-based variational model to generate segmentation results for histopathology images.
The proposed method considers the common characteristics of target regions in histopathology images and can be trained in an end-to-end manner.
It can generate more regionally consistent and smoother boundary segmentation, and is more robust to unlabeled novel' regions.
arXiv Detail & Related papers (2023-04-07T10:12:21Z) - Associating Spatially-Consistent Grouping with Text-supervised Semantic
Segmentation [117.36746226803993]
We introduce self-supervised spatially-consistent grouping with text-supervised semantic segmentation.
Considering the part-like grouped results, we further adapt a text-supervised model from image-level to region-level recognition.
Our method achieves 59.2% mIoU and 32.4% mIoU on Pascal VOC and Pascal Context benchmarks.
arXiv Detail & Related papers (2023-04-03T16:24:39Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Local contrastive loss with pseudo-label based self-training for
semi-supervised medical image segmentation [13.996217500923413]
Semi/self-supervised learning-based approaches exploit unlabeled data along with limited annotated data.
Recent self-supervised learning methods use contrastive loss to learn good global level representations from unlabeled images.
We propose a local contrastive loss to learn good pixel level features useful for segmentation by exploiting semantic label information.
arXiv Detail & Related papers (2021-12-17T17:38:56Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
We propose a novel uncertainty-guided semi-supervised learning based on a student-teacher approach for training the segmentation network.
The proposed framework is a key contribution and applicable for biomedical image segmentation across various imaging modalities.
arXiv Detail & Related papers (2021-03-02T23:14:25Z) - Causal Intervention for Weakly-Supervised Semantic Segmentation [122.1846968696862]
We aim to generate better pixel-level pseudo-masks by using only image-level labels.
We propose a structural causal model to analyze the causalities among images, contexts, and class labels.
Based on it, we develop a new method: Context Adjustment (CONTA), to remove the confounding bias in image-level classification.
arXiv Detail & Related papers (2020-09-26T09:26:29Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - Weakly-Supervised Segmentation for Disease Localization in Chest X-Ray
Images [0.0]
We propose a novel approach to the semantic segmentation of medical chest X-ray images with only image-level class labels as supervision.
We show that this approach is applicable to chest X-rays for detecting an anomalous volume of air between the lung and the chest wall.
arXiv Detail & Related papers (2020-07-01T20:48:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.