NavMorph: A Self-Evolving World Model for Vision-and-Language Navigation in Continuous Environments
- URL: http://arxiv.org/abs/2506.23468v2
- Date: Tue, 22 Jul 2025 03:03:26 GMT
- Title: NavMorph: A Self-Evolving World Model for Vision-and-Language Navigation in Continuous Environments
- Authors: Xuan Yao, Junyu Gao, Changsheng Xu,
- Abstract summary: Vision-and-Language Navigation in Continuous Environments (VLN-CE) requires agents to execute sequential navigation actions in complex environments guided by natural language instructions.<n>Inspired by human cognition, we present NavMorph, a self-evolving world model framework that enhances environmental understanding and decision-making in VLN-CE tasks.
- Score: 67.18144414660681
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-and-Language Navigation in Continuous Environments (VLN-CE) requires agents to execute sequential navigation actions in complex environments guided by natural language instructions. Current approaches often struggle with generalizing to novel environments and adapting to ongoing changes during navigation. Inspired by human cognition, we present NavMorph, a self-evolving world model framework that enhances environmental understanding and decision-making in VLN-CE tasks. NavMorph employs compact latent representations to model environmental dynamics, equipping agents with foresight for adaptive planning and policy refinement. By integrating a novel Contextual Evolution Memory, NavMorph leverages scene-contextual information to support effective navigation while maintaining online adaptability. Extensive experiments demonstrate that our method achieves notable performance improvements on popular VLN-CE benchmarks. Code is available at https://github.com/Feliciaxyao/NavMorph.
Related papers
- A Navigation Framework Utilizing Vision-Language Models [0.0]
Vision-and-Language Navigation (VLN) presents a complex challenge in embodied AI.<n>Recent advances in large vision-language models (LVLMs), such as CLIP and Flamingo, have significantly improved multimodal understanding.<n>We propose a modular, plug-and-play navigation framework that decouples vision-language understanding from action planning.
arXiv Detail & Related papers (2025-06-11T20:51:58Z) - Mem2Ego: Empowering Vision-Language Models with Global-to-Ego Memory for Long-Horizon Embodied Navigation [35.71602601385161]
We present a novel vision-language model (VLM)-based navigation framework.<n>Our approach enhances spatial reasoning and decision-making in long-horizon tasks.<n> Experimental results demonstrate that the proposed method surpasses previous state-of-the-art approaches in object navigation tasks.
arXiv Detail & Related papers (2025-02-20T04:41:40Z) - Navigation World Models [68.58459393846461]
We introduce a controllable video generation model that predicts future visual observations based on past observations and navigation actions.<n>In familiar environments, NWM can plan navigation trajectories by simulating them and evaluating whether they achieve the desired goal.<n>Experiments demonstrate its effectiveness in planning trajectories from scratch or by ranking trajectories sampled from an external policy.
arXiv Detail & Related papers (2024-12-04T18:59:45Z) - UnitedVLN: Generalizable Gaussian Splatting for Continuous Vision-Language Navigation [71.97405667493477]
We introduce a novel, generalizable 3DGS-based pre-training paradigm, called UnitedVLN.<n>It enables agents to better explore future environments by unitedly rendering high-fidelity 360 visual images and semantic features.<n>UnitedVLN outperforms state-of-the-art methods on existing VLN-CE benchmarks.
arXiv Detail & Related papers (2024-11-25T02:44:59Z) - Cog-GA: A Large Language Models-based Generative Agent for Vision-Language Navigation in Continuous Environments [19.818370526976974]
Vision Language Navigation in Continuous Environments (VLN-CE) represents a frontier in embodied AI.
We introduce Cog-GA, a generative agent founded on large language models (LLMs) tailored for VLN-CE tasks.
Cog-GA employs a dual-pronged strategy to emulate human-like cognitive processes.
arXiv Detail & Related papers (2024-09-04T08:30:03Z) - Mobility VLA: Multimodal Instruction Navigation with Long-Context VLMs and Topological Graphs [95.8010627763483]
Mobility VLA is a hierarchical Vision-Language-Action (VLA) navigation policy that combines the environment understanding and common sense reasoning power of long-context VLMs.
We show that Mobility VLA has a high end-to-end success rates on previously unsolved multimodal instructions.
arXiv Detail & Related papers (2024-07-10T15:49:07Z) - Vision and Language Navigation in the Real World via Online Visual
Language Mapping [18.769171505280127]
Vision-and-language navigation (VLN) methods are mainly evaluated in simulation.
We propose a novel framework to address the VLN task in the real world.
We evaluate the proposed pipeline on an Interbotix LoCoBot WX250 in an unseen lab environment.
arXiv Detail & Related papers (2023-10-16T20:44:09Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
Vision-language navigation is a task that requires an agent to follow instructions to navigate in environments.
We propose ETPNav, which focuses on two critical skills: 1) the capability to abstract environments and generate long-range navigation plans, and 2) the ability of obstacle-avoiding control in continuous environments.
ETPNav yields more than 10% and 20% improvements over prior state-of-the-art on R2R-CE and RxR-CE datasets.
arXiv Detail & Related papers (2023-04-06T13:07:17Z) - Beyond the Nav-Graph: Vision-and-Language Navigation in Continuous
Environments [48.898567402373324]
We develop a language-guided navigation task set in a continuous 3D environment.
By being situated in continuous environments, this setting lifts a number of assumptions implicit in prior work.
arXiv Detail & Related papers (2020-04-06T17:49:12Z) - Environment-agnostic Multitask Learning for Natural Language Grounded
Navigation [88.69873520186017]
We introduce a multitask navigation model that can be seamlessly trained on Vision-Language Navigation (VLN) and Navigation from Dialog History (NDH) tasks.
Experiments show that environment-agnostic multitask learning significantly reduces the performance gap between seen and unseen environments.
arXiv Detail & Related papers (2020-03-01T09:06:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.