KiseKloset: Comprehensive System For Outfit Retrieval, Recommendation, And Try-On
- URL: http://arxiv.org/abs/2506.23471v1
- Date: Mon, 30 Jun 2025 02:25:39 GMT
- Title: KiseKloset: Comprehensive System For Outfit Retrieval, Recommendation, And Try-On
- Authors: Thanh-Tung Phan-Nguyen, Khoi-Nguyen Nguyen-Ngoc, Tam V. Nguyen, Minh-Triet Tran, Trung-Nghia Le,
- Abstract summary: We propose a novel comprehensive KiseKloset system for outfit retrieval, recommendation, and try-on.<n>We introduce a novel transformer architecture designed to recommend complementary items from diverse categories.<n>We employ a lightweight yet efficient virtual try-on framework capable of real-time operation, memory efficiency, and maintaining realistic outputs.
- Score: 15.775881888811018
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The global fashion e-commerce industry has become integral to people's daily lives, leveraging technological advancements to offer personalized shopping experiences, primarily through recommendation systems that enhance customer engagement through personalized suggestions. To improve customers' experience in online shopping, we propose a novel comprehensive KiseKloset system for outfit retrieval, recommendation, and try-on. We explore two approaches for outfit retrieval: similar item retrieval and text feedback-guided item retrieval. Notably, we introduce a novel transformer architecture designed to recommend complementary items from diverse categories. Furthermore, we enhance the overall performance of the search pipeline by integrating approximate algorithms to optimize the search process. Additionally, addressing the crucial needs of online shoppers, we employ a lightweight yet efficient virtual try-on framework capable of real-time operation, memory efficiency, and maintaining realistic outputs compared to its predecessors. This virtual try-on module empowers users to visualize specific garments on themselves, enhancing the customers' experience and reducing costs associated with damaged items for retailers. We deployed our end-to-end system for online users to test and provide feedback, enabling us to measure their satisfaction levels. The results of our user study revealed that 84% of participants found our comprehensive system highly useful, significantly improving their online shopping experience.
Related papers
- RecGPT Technical Report [57.84251629878726]
We propose RecGPT, a next-generation framework that places user intent at the center of the recommendation pipeline.<n> RecGPT integrates large language models into key stages of user interest mining, item retrieval, and explanation generation.<n>Online experiments demonstrate that RecGPT achieves consistent performance gains across stakeholders.
arXiv Detail & Related papers (2025-07-30T17:55:06Z) - Interactive Visualization Recommendation with Hier-SUCB [52.11209329270573]
We propose an interactive personalized visualization recommendation (PVisRec) system that learns on user feedback from previous interactions.<n>For more interactive and accurate recommendations, we propose Hier-SUCB, a contextual semi-bandit in the PVisRec setting.
arXiv Detail & Related papers (2025-02-05T17:14:45Z) - Centrality-aware Product Retrieval and Ranking [14.710718676076327]
This paper addresses the challenge of improving user experience on e-commerce platforms by enhancing product ranking relevant to users' search queries.
We curate samples from eBay, manually annotated with buyer-centric relevance scores and centrality scores, which reflect how well the product title matches the users' intent.
We introduce a User-intent Centrality Optimization (UCO) approach for existing models, which optimises for the user intent in semantic product search.
arXiv Detail & Related papers (2024-10-21T11:59:14Z) - Interactive Garment Recommendation with User in the Loop [77.35411131350833]
We propose to build a user profile on the fly by integrating user reactions as we recommend complementary items to compose an outfit.
We present a reinforcement learning agent capable of suggesting appropriate garments and ingesting user feedback to improve its recommendations.
arXiv Detail & Related papers (2024-02-18T16:01:28Z) - PIE: Personalized Interest Exploration for Large-Scale Recommender
Systems [0.0]
We present a framework for exploration in large-scale recommender systems to address these challenges.
Our methodology can be easily integrated into an existing large-scale recommender system with minimal modifications.
Our work has been deployed in production on Facebook Watch, a popular video discovery and sharing platform serving billions of users.
arXiv Detail & Related papers (2023-04-13T22:25:09Z) - ItemSage: Learning Product Embeddings for Shopping Recommendations at
Pinterest [60.841761065439414]
At Pinterest, we build a single set of product embeddings called ItemSage to provide relevant recommendations in all shopping use cases.
This approach has led to significant improvements in engagement and conversion metrics, while reducing both infrastructure and maintenance cost.
arXiv Detail & Related papers (2022-05-24T02:28:58Z) - Scaling up Search Engine Audits: Practical Insights for Algorithm
Auditing [68.8204255655161]
We set up experiments for eight search engines with hundreds of virtual agents placed in different regions.
We demonstrate the successful performance of our research infrastructure across multiple data collections.
We conclude that virtual agents are a promising venue for monitoring the performance of algorithms across long periods of time.
arXiv Detail & Related papers (2021-06-10T15:49:58Z) - Personalized Embedding-based e-Commerce Recommendations at eBay [3.1236273633321416]
We present an approach for generating personalized item recommendations in an e-commerce marketplace by learning to embed items and users in the same vector space.
Data ablation is incorporated into the offline model training process to improve the robustness of the production system.
arXiv Detail & Related papers (2021-02-11T17:58:51Z) - Shop The Look: Building a Large Scale Visual Shopping System at
Pinterest [16.132346347702075]
Shop The Look is an online shopping discovery service at Pinterest, leveraging visual search to enable users to find and buy products within an image.
We discuss topics including core technology across object detection and visual embeddings, serving infrastructure for realtime inference, and data labeling methodology for training/evaluation data collection and human evaluation.
The user-facing impacts of our system design choices are measured through offline evaluations, human relevance judgements, and online A/B experiments.
arXiv Detail & Related papers (2020-06-18T21:38:07Z) - Personalized Fashion Recommendation from Personal Social Media Data: An
Item-to-Set Metric Learning Approach [71.63618051547144]
We study the problem of personalized fashion recommendation from social media data.
We present an item-to-set metric learning framework that learns to compute the similarity between a set of historical fashion items of a user to a new fashion item.
To validate the effectiveness of our approach, we collect a real-world social media dataset.
arXiv Detail & Related papers (2020-05-25T23:24:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.