Online Human Action Detection during Escorting
- URL: http://arxiv.org/abs/2506.23573v1
- Date: Mon, 30 Jun 2025 07:25:31 GMT
- Title: Online Human Action Detection during Escorting
- Authors: Siddhartha Mondal, Avik Mitra, Chayan Sarkar,
- Abstract summary: escorting robots primarily rely on navigation-focused strategies, assuming that the person being escorted will follow without issue.<n>In crowded environments, individuals may struggle to keep pace, become obstructed, get distracted, or need to stop unexpectedly.<n>We propose a novel neural network architecture that can accomplish both person re-identification and action prediction in real-time.
- Score: 1.4610685586329806
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The deployment of robot assistants in large indoor spaces has seen significant growth, with escorting tasks becoming a key application. However, most current escorting robots primarily rely on navigation-focused strategies, assuming that the person being escorted will follow without issue. In crowded environments, this assumption often falls short, as individuals may struggle to keep pace, become obstructed, get distracted, or need to stop unexpectedly. As a result, conventional robotic systems are often unable to provide effective escorting services due to their limited understanding of human movement dynamics. To address these challenges, an effective escorting robot must continuously detect and interpret human actions during the escorting process and adjust its movement accordingly. However, there is currently no existing dataset designed specifically for human action detection in the context of escorting. Given that escorting often occurs in crowded environments, where other individuals may enter the robot's camera view, the robot also needs to identify the specific human it is escorting (the subject) before predicting their actions. Since no existing model performs both person re-identification and action prediction in real-time, we propose a novel neural network architecture that can accomplish both tasks. This enables the robot to adjust its speed dynamically based on the escortee's movements and seamlessly resume escorting after any disruption. In comparative evaluations against strong baselines, our system demonstrates superior efficiency and effectiveness, showcasing its potential to significantly improve robotic escorting services in complex, real-world scenarios.
Related papers
- A roadmap for AI in robotics [55.87087746398059]
We are witnessing growing excitement in robotics at the prospect of leveraging the potential of AI to tackle some of the outstanding barriers to the full deployment of robots in our daily lives.<n>This article offers an assessment of what AI for robotics has achieved since the 1990s and proposes a short- and medium-term research roadmap listing challenges and promises.
arXiv Detail & Related papers (2025-07-26T15:18:28Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
Legged robots are physically capable of navigating a diverse variety of environments and overcoming a wide range of obstructions.
Current learning methods often struggle with generalization to the long tail of unexpected situations without heavy human supervision.
We propose a system, VLM-Predictive Control (VLM-PC), combining two key components that we find to be crucial for eliciting on-the-fly, adaptive behavior selection.
arXiv Detail & Related papers (2024-07-02T21:00:30Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
We develop methods for training policies for socially unobtrusive navigation.
By minimizing this counterfactual perturbation, we can induce robots to behave in ways that do not alter the natural behavior of humans in the shared space.
We collect a large dataset where an indoor mobile robot interacts with human bystanders.
arXiv Detail & Related papers (2023-06-02T19:07:52Z) - Improving safety in physical human-robot collaboration via deep metric
learning [36.28667896565093]
Direct physical interaction with robots is becoming increasingly important in flexible production scenarios.
In order to keep the risk potential low, relatively simple measures are prescribed for operation, such as stopping the robot if there is physical contact or if a safety distance is violated.
This work uses the Deep Metric Learning (DML) approach to distinguish between non-contact robot movement, intentional contact aimed at physical human-robot interaction, and collision situations.
arXiv Detail & Related papers (2023-02-23T11:26:51Z) - Intention Aware Robot Crowd Navigation with Attention-Based Interaction
Graph [3.8461692052415137]
We study the problem of safe and intention-aware robot navigation in dense and interactive crowds.
We propose a novel recurrent graph neural network with attention mechanisms to capture heterogeneous interactions among agents.
We demonstrate that our method enables the robot to achieve good navigation performance and non-invasiveness in challenging crowd navigation scenarios.
arXiv Detail & Related papers (2022-03-03T16:26:36Z) - Preemptive Motion Planning for Human-to-Robot Indirect Placement
Handovers [12.827398121150386]
Human-to-robot handovers can take either of two approaches: (1) direct hand-to-hand or (2) indirect hand-to-placement-to-pick-up.
To minimize such idle time, the robot must preemptively predict the human intent of where the object will be placed.
We introduce a novel prediction-planning pipeline that allows the robot to preemptively move towards the human agent's intended placement location.
arXiv Detail & Related papers (2022-03-01T00:21:39Z) - What we see and What we don't see: Imputing Occluded Crowd Structures
from Robot Sensing [7.6272993984699635]
We address the problem of inferring the human occupancy in the space around the robot, in blind spots, beyond the range of its sensing capabilities.
This problem is rather unexplored in spite of the important impact it has on the robot crowd navigation efficiency and safety.
arXiv Detail & Related papers (2021-09-17T12:12:13Z) - From Movement Kinematics to Object Properties: Online Recognition of
Human Carefulness [112.28757246103099]
We show how a robot can infer online, from vision alone, whether or not the human partner is careful when moving an object.
We demonstrated that a humanoid robot could perform this inference with high accuracy (up to 81.3%) even with a low-resolution camera.
The prompt recognition of movement carefulness from observing the partner's action will allow robots to adapt their actions on the object to show the same degree of care as their human partners.
arXiv Detail & Related papers (2021-09-01T16:03:13Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
We show that a short calibration using REMP can effectively bridge the gap between what a non-expert user thinks a robot can reach and the ground-truth.
We show that this calibration procedure not only results in better user perception, but also promotes more efficient human-robot collaborations.
arXiv Detail & Related papers (2021-03-06T09:14:30Z) - Careful with That! Observation of Human Movements to Estimate Objects
Properties [106.925705883949]
We focus on the features of human motor actions that communicate insights on the weight of an object.
Our final goal is to enable a robot to autonomously infer the degree of care required in object handling.
arXiv Detail & Related papers (2021-03-02T08:14:56Z) - Minimizing Robot Navigation-Graph For Position-Based Predictability By
Humans [20.13307800821161]
In situations where humans and robots are moving in the same space whilst performing their own tasks, predictable paths are vital.
The cognitive effort for the human to predict the robot's path becomes untenable as the number of robots increases.
We propose to minimize the navigation-graph of the robot for position-based predictability.
arXiv Detail & Related papers (2020-10-28T22:09:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.